La qualité de l’air intérieur a toujours été un enjeu majeur pour notre santé. Et aujourd’hui, une nouvelle technologie pourrait changer la donne en utilisant l’éclairage domestique pour purifier l’air que nous respirons. Des abat-jours innovants, associés à une technologie de catalyseur, promettent de métamorphoser les polluants de l’air intérieur en composés inoffensifs.
Présentée lors de la réunion d’automne 2023 de l’American Chemical Society (ACS), cette solution innovante s’attaque principalement aux composés organiques volatils (VOC). Ces derniers représentent la majorité des polluants aériens intérieurs.
Hyoung-il Kim, Ph.D., l’investigateur principal du projet, indique : « Bien que la concentration de VOCs dans une maison ou un bureau soit faible, les gens passent plus de 90% de leur temps à l’intérieur, l’exposition s’accumule donc avec le temps. »
Une solution aux défis existants
Traditionnellement, les méthodes pour éliminer les VOCs s’appuient sur du charbon actif ou d’autres types de filtres nécessitant un remplacement régulier. Minhyung Lee, étudiant diplômé dans le laboratoire de Kim à l’Université Yonsei, précise : « D’autres dispositifs ont été développés pour décomposer les VOCs avec l’aide de thermocatalyseurs activés par des températures élevées ou avec des photocatalyseurs qui répondent à la lumière. » Cependant, la plupart de ces systèmes nécessitent une source lumineuse UV séparée, produisant parfois des sous-produits indésirables.
L’approche innovante de l’équipe de Kim utilise une source lumineuse visible qui produit également de la chaleur, comme une ampoule halogène ou à incandescence, associée à un abat-jour revêtu d’un thermocatalyseur.
Dans un article publié à l’automne dernier, l’équipe a indiqué qu’elle avait synthétisé des thermocatalyseurs composés de dioxyde de titane et d’une petite quantité de platine. Les chercheurs ont enduit l’intérieur d’un abat-jour en aluminium avec le catalyseur et ont placé l’abat-jour au-dessus d’une ampoule halogène de 100 watts dans une chambre d’essai contenant de l’air et de l’acétaldéhyde gazeux.
En allumant la lampe, l’abat-jour a été chauffé à des températures allant jusqu’à environ 120°C – suffisamment chaudes pour activer les catalyseurs et décomposer l’acétaldéhyde. Au cours de ce processus d’oxydation, le COV a d’abord été transformé en acide acétique, puis en acide formique, et enfin en dioxyde de carbone et en eau. Ces deux acides sont doux et la quantité de dioxyde de carbone libérée est inoffensive, note Kim. Les chercheurs ont également constaté que le formaldéhyde pouvait être décomposé dans les mêmes conditions et que la technique fonctionnait avec des ampoules à incandescence.
Exploiter la chaleur des ampoules pour une cause vertueuse
Les ampoules halogènes et à incandescence transforment une grande partie de leur énergie en chaleur plutôt qu’en lumière. « Cette chaleur est généralement gaspillée, » déclare Kim, « mais nous avons décidé de l’utiliser pour activer un thermocatalyseur et décomposer les VOCs. »
Dans leurs récents travaux, l’équipe a prouvé que cette méthode est non seulement efficace pour éliminer les VOCs, mais elle peut également décomposer d’autres composés, rendant l’air plus sûr à respirer.
Prochaines étapes : vers une compatibilité avec les LEDs
Avec la popularité croissante des LEDs, l’équipe est à la recherche de solutions pour adapter leur concept à cette nouvelle technologie d’éclairage. Kim et son groupe développent actuellement des photocatalyseurs stimulés par la lumière proche des UV émise par les LEDs.
Leur objectif ultime est clair : « Développer un catalyseur hybride qui peut utiliser tout le spectre produit par les sources lumineuses, y compris la lumière UV et visible, ainsi que la chaleur résiduelle, » conclut Kim.
En synthèse
L’utilisation innovante des abat-jours recouverts de catalyseurs offre une solution prometteuse pour améliorer la qualité de l’air intérieur. En capitalisant sur la chaleur générée par les ampoules halogènes et à incandescence, ces abat-jours pourraient devenir un outil courant pour assurer un environnement intérieur plus sain. L’adaptation de cette technologie aux LEDs est la prochaine étape passionnante dans cette quête d’un air pur.
Pour une meilleure compréhension
Quels sont les principaux polluants de l’air intérieur ? Les composés organiques volatils, également appelés VOCs, sont les principaux responsables.
Comment ces abat-jours innovants fonctionnent-ils ? Ils sont revêtus de catalyseurs qui, lorsqu’ils sont chauffés par une ampoule, transforment les polluants en composés inoffensifs.
Est-ce compatible avec toutes les sources lumineuses ? Pour le moment, la technologie est optimisée pour les ampoules halogènes et à incandescence. Des recherches sont en cours pour la rendre compatible avec les LEDs.
Légende illustration principale : Un abat-jour recouvert d’un catalyseur utilise la chaleur d’une ampoule à incandescence pour détruire la pollution de l’air intérieur. Crédit : Minhyung Lee
Titre de l’étude : « Oxydation thermocatalytique des COV par l’exploitation de la chaleur résiduelle intérieure »
Résumé
Avec le début de la modernisation, le temps passé à l’intérieur a augmenté en raison de la gravité de la pollution de l’air (SARS-CoV-2, poussières fines, micro-organismes en suspension dans l’air et composés organiques volatils). Les polluants atmosphériques dangereux proviennent principalement de diverses sources industrielles et intérieures. Toutefois, en raison de la mauvaise circulation de l’air, les polluants sont plus nombreux à l’intérieur qu’à l’extérieur. Les méthodes conventionnelles d’élimination des COV à l’aide de charbon actif ou de filtres ont été utilisées, mais ces méthodes nécessitent un remplacement périodique. Des technologies telles que les photocatalyseurs utilisant la lumière ultraviolette et les catalyseurs thermiques utilisant des températures élevées (200 ~ 400 °C) ont été beaucoup étudiées, mais ces méthodes présentent un problème dans la mesure où elles nécessitent des équipements supplémentaires.
Nous présentons ici un système de thermocatalyse à basse température qui agit efficacement sur la chaleur résiduelle des lampes d’intérieur (par exemple, les lampes halogènes, à incandescence, au sodium et aux halogénures métalliques). Le Pt-TiO2, qui peut présenter une activité catalytique élevée en chargeant une quantité infime de nanoparticules de platine sur la surface du catalyseur TiO2, a été utilisé comme thermocatalyseur optimal. Le catalyseur Pt-TiO2 peut adsorber/éliminer une forte concentration de COV même à température ambiante. En outre, les COV sont complètement oxydés et convertis en CO2 inoffensif à une température de 120 °C, qui est la température de chauffage la plus basse des ampoules d’intérieur. En outre, en recouvrant le thermocatalyseur sur l’abat-jour intérieur, nous avons mis en œuvre pour la première fois un système thermocatalytique utilisant la chaleur perdue qui peut éliminer les COV de manière écologique sans dispositif d’alimentation en chaleur supplémentaire. Le système thermocatalytique proposé offre une méthode durable et réalisable d’élimination des COV à l’intérieur.