MME2026 728x90
lundi, février 16, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats

Vers des batteries plus durables grâce aux bactéries ?

par La rédaction
13 janvier 2014
en Technologie

Une équipe de chercheurs du Laboratoire de réactivité et chimie des solides (CNRS / Université de Picardie) en collaboration avec des chercheurs de l’Institut de minéralogie et de physique des milieux condensés (CNRS / UPMC) vient d’utiliser des bactéries pour produire des coques d’oxyde de fer utilisables comme matériaux d’électrodes pour batteries Li-ion.

Ces résultats font l’objet d’une publication dans la revue Energy & Environmental Science.

Les organismes vivants sont sources d’inspiration pour l’homme depuis des siècles, de Léonard de Vinci à l’inventeur du Velcro. L’étude présentée ici s’inscrit dans cette continuité. Elle applique cette démarche au stockage électrochimique de l’énergie avec une légère différence : "il ne s’agit plus de s’inspirer de la nature mais d’apprendre à en tirer directement bénéfice."

La technologie Li-ion repose sur une chimie riche liée à la large gamme de matériaux qui peuvent être utilisés comme électrodes positives (LCO, LFP, NMC, LMO…) et négatives (C, Sn, Si, LTO…). Actuellement, la plupart de ces matériaux d’électrode commerciaux sont préparés par voie céramique (T > 400 °C) avec de longues périodes de chauffe (> 24h). Ils ont donc un coût énergétique élevé. Les scientifiques étudient donc de plus en plus de nouvelles voies de synthèse durables moins énergivores (ex : « chimie douce »). En France, le réseau de recherche sur le stockage électrochimique de l’énergie (RS2E) regroupe les équipes qui développent cette thématique liée au « stockage éco-compatible ».

Dans ce contexte, une équipe du réseau RS2E vient de mettre au point la synthèse d’un oxyhydroxyde de fer par voie bactérienne à température ambiante. La bactérie utilisée, Acidovorax sp., mesure 1 à 2 µm de long et 0,2 µm de large. Par son métabolisme elle peut remplir son périplasme, un espace de 40 nm d’épaisseur situé entre les deux parois de sa membrane, avec des cristaux de ?-FeOOH (la lépidocrocite, un oxyhydroxyde de fer solide cristallisé).

Il est ensuite possible de transformer la lépidocrocite présente dans le périplasme en hématite par un chauffage court (< 1h) à 700°C qui détruit également la bactérie (fig. 1). Le choix de l’hématite (a-Fe2O3) est motivé par sa forte capacité à stocker des charges électriques (1000 mAh/g).

Vers des batteries plus durables grâce aux bactéries ?

[ Bactéries après chauffage. Les flèches indiquent quelques coques ouvertes, ce qui permet d’observer leur forme creuse. © RS2E/RSC ]

La poudre d’hématite ainsi produite est organisée sous forme de multiples coques creuses reprenant la forme du périplasme des bactéries, qui ont agi comme des moules (fig. 2). Les chercheurs ont utilisé le terme « bactériomorphes » pour désigner ces coques.

Vers des batteries plus durables grâce aux bactéries ?

[ fig. 2 : Bactériomorphe vue en coupe. On remarque les grains nanométriques d’hématite là où était le périplasme de la bactérie. © RS2E/RSC ]

Cette organisation particulière confère-t-elle des propriétés intéressantes à l’hématite ? Pour répondre à cette question, les chercheurs ont comparé les performances de cette hématite organisée sous forme de coques creuses à des bactériomorphes d‘hématite détexturés (broyés pour détruire leur organisation en coques creuses) et à de l’hématite abiotique (synthétisée par voie chimique « classique »).

Après 10 cycles de charges-décharges à vitesse lente, 91% de la capacité initiale à stocker des charges demeure. Elle n’est que de 18% pour les échantillons abiotiques, et de 8% pour ceux qui sont détexturés (fig. 3). Encore plus surprenant, les coques conservent cette aptitude de stockage sur une vaste gamme de vitesses de charge/décharge. En effet, si l’on fait varier cette vitesse de charge-décharge d’un facteur 1000 (entre C/100 et 10C), 70% de l’aptitude initiale à stocker des charges est conservée. Cette excellente capacité de stockage s’explique par l’organisation micrométrique des coquilles bactériomorphes qui confère une meilleure stabilité mécanique à l’électrode et par une porosité qui permet un meilleur contact avec l’électrolyte.

Articles à explorer

Symphonics et Sungrow développent une batterie autonome pour le réseau électrique

Symphonics et Sungrow développent une batterie autonome pour le réseau électrique

15 février 2026
IA prédit durée de vie batteries : découverte avec quelques jours de tests

L’IA prédit durée de vie batteries : découverte avec quelques jours de tests

13 février 2026

Vers des batteries plus durables grâce aux bactéries ?

[ Comparaison des performances à différents régimes des bactériomorphes d’hématite et de l’hématite détexturée. À droite, on remarque l’organisation différente des deux échantillons. © RS2E/RSC ]

À ce jour, ces nouvelles électrodes comptent parmi les plus performantes obtenus avec de l’hématite. Ces travaux ont permis aux chercheurs de mettre l’accent sur l’obtention de propriétés électrochimiques remarquables liées à une organisation originale du matériau obtenu par une voie de synthèse moins coûteuse en énergie.

Par ailleurs, l’utilisation à grande échelle de bactéries comme moyen de production est déjà maîtrisée, par exemple pour produire de l’insuline ou du glutamate. On compte ainsi 2 millions de tonnes de glutamate produites par an de cette façon.

Les scientifiques veulent maintenant dépasser le stade de l’étude en produisant par voie bactérienne des matériaux d’électrodes positives directement utilisables dans des systèmes Li-ion tels que les phosphates doubles (formule générale AMPO4 où A est un métal alcalin – Li, Na… – et M un métal de transition 3d – Fe, Mn…).

Référence
J. Miot, N. Recham, D. Larcher, F. Guyot, J. Brest et J-M. Tarascon
Biomineralized a-Fe2O3: Texturation and electrochemical reaction with Li.
Energy & Environmental Science 7 Novembre 2013
DOI : 10.1039/c3ee41767k

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: bacteriesbatterieelectrode
Article précédent

Une centrale solaire à panneaux photovoltaïques double faces au Japon

Article suivant

Eolien en mer : le plein de promesses en Pays-de-la-Loire

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Mayank Shrivastava (troisième à partir de la droite) tenant un dispositif électrique représentatif de 8 pouces, avec certains de ses doctorants qui travaillent sur divers aspects de la technologie GaN Power et RF, à l'ESE, IISc (Crédit : Mayank Shrivastava)
Industrie énergie

Redéfinir les dispositifs à base de GaN pour leur adoption dans les véhicules électriques et centres de données

il y a 2 heures
A stop-motion image that shows pairs of millimeter-scale beads forming a time crystal over approximately one-third of a
Quantique

Des scientifiques découvrent des cristaux temporels « lévitants » que l’on peut tenir dans la main

il y a 3 heures
Charleroi modernise son balisage aéroportuaire avec une transition massive au LED
Industrie technologie

Charleroi modernise son balisage aéroportuaire avec une transition massive au LED

il y a 1 jour
Symphonics et Sungrow développent une batterie autonome pour le réseau électrique
Batterie

Symphonics et Sungrow développent une batterie autonome pour le réseau électrique

il y a 1 jour
Un modèle d'IA peut lire et diagnostiquer une IRM cérébrale en quelques secondes
Intelligence artificielle

Un modèle d’IA peut lire et diagnostiquer une IRM cérébrale en quelques secondes

il y a 2 jours
Le bois devient un conducteur haute résistance grâce aux gels eutectiques à base de métal
Matériaux

Le bois devient un conducteur haute résistance grâce aux gels eutectiques à base de métal

il y a 3 jours
Caltech scientists have developed a way to guide light on silicon wafers with low signal loss approaching that of o
Optique

Étendre les performances à perte ultrabasse des fibres optiques aux puces photoniques

il y a 3 jours
Un bras robotique en forme de trompe d'éléphant pourrait soulager de la corvée de vaisselle
Robotique

Un bras robotique en forme de trompe d’éléphant pourrait soulager de la corvée de vaisselle

il y a 3 jours
Plus d'articles
Article suivant

Eolien en mer : le plein de promesses en Pays-de-la-Loire

Gaz de schiste : Total acquiert deux permis au Royaume-uni

Hydroélectricité : première centrale de pompage-turbinage en Israël

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

MME2026 300x600

Inscription newsletter

Tendance

Mayank Shrivastava (troisième à partir de la droite) tenant un dispositif électrique représentatif de 8 pouces, avec certains de ses doctorants qui travaillent sur divers aspects de la technologie GaN Power et RF, à l'ESE, IISc (Crédit : Mayank Shrivastava)
Industrie énergie

Redéfinir les dispositifs à base de GaN pour leur adoption dans les véhicules électriques et centres de données

par La rédaction
16 février 2026
0

Des chercheurs de l'Indian Institute of Science (IISc) ont découvert des principes fondamentaux pour la conception des...

A stop-motion image that shows pairs of millimeter-scale beads forming a time crystal over approximately one-third of a

Des scientifiques découvrent des cristaux temporels « lévitants » que l’on peut tenir dans la main

16 février 2026
Le Tzen 4, nouvelle colonne vertébrale des transports en Essonne

Le Tzen 4, nouvelle colonne vertébrale des transports en Essonne

16 février 2026
Charleroi modernise son balisage aéroportuaire avec une transition massive au LED

Charleroi modernise son balisage aéroportuaire avec une transition massive au LED

15 février 2026
Symphonics et Sungrow développent une batterie autonome pour le réseau électrique

Symphonics et Sungrow développent une batterie autonome pour le réseau électrique

15 février 2026

Points forts

Charleroi modernise son balisage aéroportuaire avec une transition massive au LED

Symphonics et Sungrow développent une batterie autonome pour le réseau électrique

Le Gard Rhodanien mise sur les carburants synthétiques pour sa reconversion industrielle

Deep Space Energy lève 930 000 euros pour ses générateurs nucléaires spatiaux

Les drones thermiques optimisent la production de neige dans les Alpes autrichiennes

Un modèle d’IA peut lire et diagnostiquer une IRM cérébrale en quelques secondes

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Mayank Shrivastava (troisième à partir de la droite) tenant un dispositif électrique représentatif de 8 pouces, avec certains de ses doctorants qui travaillent sur divers aspects de la technologie GaN Power et RF, à l'ESE, IISc (Crédit : Mayank Shrivastava)

Redéfinir les dispositifs à base de GaN pour leur adoption dans les véhicules électriques et centres de données

16 février 2026
A stop-motion image that shows pairs of millimeter-scale beads forming a time crystal over approximately one-third of a

Des scientifiques découvrent des cristaux temporels « lévitants » que l’on peut tenir dans la main

16 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com