Un ancien motif de vannerie japonaise pourrait bien être la clé d’une avancée majeure en physique quantique. À l’université Rice, des physiciens ont mis au jour des propriétés inattendues dans des matériaux structurés en « kagome ». Leur étude sur les films minces de fer-étain (FeSn) bouscule les théories conventionnelles du magnétisme et laisse entrevoir des applications inédites pour les technologies quantiques et les supraconducteurs.
Les résultats, publiés dans Nature Communications, révèlent que les propriétés magnétiques du FeSn proviennent d’électrons localisés, et non d’électrons mobiles comme les scientifiques le pensaient jusqu’à présent. Cette découverte remet en question les théories existantes sur le magnétisme dans les métaux kagomé, dans lesquelles les électrons itinérants étaient supposés être à l’origine du comportement magnétique. En offrant une nouvelle perspective sur le magnétisme, les travaux de l’équipe de recherche pourraient guider le développement de matériaux aux propriétés personnalisées pour des applications technologiques avancées telles que l’informatique quantique et les supraconducteurs.
« Ce travail devrait stimuler d’autres études expérimentales et théoriques sur les propriétés émergentes des matériaux quantiques, en approfondissant notre compréhension de ces matériaux énigmatiques et de leurs applications potentielles dans le monde réel », a indiqué M. Yi, professeur agrégé de physique et d’astronomie et membre senior de l’Académie Rice.
À l’aide d’une technique avancée combinant l’épitaxie par faisceaux moléculaires et la spectroscopie de photoémission résolue en angle, les chercheurs ont créé des couches minces de FeSn de haute qualité et ont analysé leur structure électronique. Ils ont constaté que même à des températures élevées, les bandes plates de kagome restaient séparées, ce qui indique que des électrons localisés sont à l’origine du magnétisme dans le matériau. Cet effet de corrélation électronique ajoute une nouvelle couche de complexité à la compréhension de l’influence du comportement des électrons sur les propriétés magnétiques des aimants kagome.
L’étude a également révélé que certaines orbitales électroniques présentaient des interactions plus fortes que d’autres, un phénomène connu sous le nom de renormalisation sélective des bandes, précédemment observé dans les supraconducteurs à base de fer, offrant une nouvelle perspective sur la manière dont les interactions électroniques influencent le comportement des aimants kagomé.
« Notre étude met en évidence l’interaction complexe entre le magnétisme et les corrélations électroniques dans les aimants kagomé et suggère que ces effets sont non négligeables dans le façonnement de leur comportement global », a ajouté Ren, un jeune chercheur de la Rice Academy.
En plus de faire progresser la compréhension du FeSn, la recherche a des implications plus larges pour les matériaux ayant des propriétés similaires. Les connaissances sur les bandes plates et les corrélations électroniques pourraient influencer le développement de nouvelles technologies telles que les supraconducteurs à haute température et l’informatique quantique topologique, où l’interaction entre le magnétisme et les bandes plates topologiques génère des états quantiques qui peuvent être utilisés comme portes logiques quantiques.
Légende illustration : Dirigée par Zheng Ren (à droite) et Ming Yi (à gauche), une nouvelle étude sur les couches minces de fer et d’étain modifie la compréhension scientifique des aimants kagomé. Photo de Jeff Fitlow/Université de Rice.
Article : « Persistent flat band splitting and strongselective band renormalization in a kagomemagnet thin film » – DOI: 10.1038/s41467-024-53722-3
Source : Rice University – Traduction Enerzine.com