La mécanique quantique, domaine complexe et fascinant, continue d’étonner par ses possibilités de manipulation. Une équipe internationale de chercheurs a récemment démontré qu’il est possible d’influencer l’évolution temporelle des systèmes quantiques grâce à des impulsions lumineuses dans l’ultraviolet extrême (XUV). Cette découverte ouvre de nouvelles perspectives pour le contrôle des processus chimiques à l’échelle atomique.
Une réalisation significative dans le domaine de la mécanique quantique a été accomplie par une équipe de chercheurs menée par le Prof. Lukas Bruder de l’Université de Freiburg.
En collaboration avec 14 instituts internationaux, parmi lesquels le Politecnico di Milano, l’Institut de Photonique et de Nanotechnologies du Conseil National de la Recherche de Milan (CNR-IFN), l’Institut des Ateliers de Matériaux du Conseil National de la Recherche de Trieste (CNR-IOM), l’Institut National de Physique Nucléaire (INFN), les Laboratoires Nationaux de Frascati (Rome) et le Synchrotron Elettra à Trieste, ils ont réussi à manipuler, pour la première fois, l’évolution temporelle d’un système quantique par interaction avec des impulsions lumineuses dans l’ultraviolet extrême (XUV).
Le groupe de recherche a démontré qu’il est possible de contrôler la matière au niveau atomique en exploitant les propriétés particulières de la lumière dans l’ultraviolet extrême (XUV). L’expérience, publiée récemment dans la revue internationale Nature, a permis de contrôler les états quantiques de la matière à des échelles de temps extrêmement rapides et leurs propriétés chimiques avec une précision inégalée. La technique a été démontrée sur des atomes d’hélium, où l’équipe a pu manipuler les niveaux d’énergie électronique et mesurer le mouvement des électrons par la suite.
L’équipe de recherche internationale a réussi à atteindre l’objectif ambitieux de sculpter l’amplitude, la phase et la polarisation des impulsions ultracourtes dans l’XUV pour contrôler le comportement des atomes. Ce niveau de contrôle a permis d’améliorer certains processus quantiques tout en en supprimant d’autres. Les expériences ont été menées au laser à électrons libres FERMI au Synchrotron Elettra à Trieste, l’un des principaux centres de recherche en Italie.
« Avec cette étude, nous avons étendu le contrôle cohérent aux régions spectrales de l’XUV et des rayons X. Le contrôle cohérent implique l’utilisation de la lumière pour manipuler l’évolution des réactions chimiques et les diriger vers des produits chimiques désirés », a expliqué le Dr Cristian Manzoni du CNR-IFN.
« Ce processus, qui est intrinsèquement une conséquence de la physique quantique, pourrait nous permettre d’utiliser la lumière comme réactif chimique pour contrôler l’efficacité des réactions. Cela pourrait permettre la production efficace de molécules hautement spécialisées pour des applications telles que les médicaments », a conclu le Prof. Giulio Cerullo du Département de Physique du Politecnico di Milano, l’un des co-auteurs de la publication.
Légende illustration : La technique a été démontrée sur des atomes d’hélium : l’équipe de recherche a pu manipuler les niveaux d’énergie électroniques et le mouvement des électrons a ensuite été mesuré. Crédit : Alessia Candeo – Politecnico di Milano
Article : « Strong-field quantum control in the extreme ultraviolet domain using pulse shaping » – DOI: 10.1038/s41586-024-08209-y