Des chercheurs ont récemment observé un cristal temporel sur une puce semi-conductrice microscopique, oscillant à un rythme de plusieurs milliards de fois par seconde. Cette découverte révèle des dynamiques non linéaires exceptionnellement élevées dans la gamme des GHz.
Les résultats de l’expérience établissent un lien solide entre des domaines auparavant non corrélés de la dynamique non linéaire des excitons-polaritons et l’optomécanique cohérente à des fréquences GHz. Les chercheurs du Paul-Drude-Institute for Solid State Electronics (PDI) à Berlin, en Allemagne, et du Centro Atómico Bariloche et Instituto Balseiro (CAB-IB) en Argentine, ont mené cette recherche.
Un échantillon de haute qualité à base de semi-conducteurs, conçu et fabriqué au PDI, a été utilisé pour piéger des condensats de matière-lumière cohérents. Cet échantillon, créé en empilant des couches de matériaux semi-conducteurs d’une épaisseur d’un atome sous des conditions de vide ultra-élevé, forme une «boîte» de la taille d’un micron capable de piéger des millions de particules quantiques. Il a ensuite été transféré au CAB-IB pour des tests.
Oscillations à des fréquences GHz
Lorsque l’équipe du CAB-IB a dirigé un laser continu sur l’échantillon, les particules contenues ont commencé à osciller à des fréquences GHz — un milliard de fois par seconde. C’est la première fois que des oscillations soutenues dans cette gamme sont observées dans un échantillon de condensat sur un dispositif semi-conducteur.
Les chercheurs ont également découvert que les oscillations pouvaient être ajustées par la puissance optique du laser, avec la possibilité de stabiliser l’évolution libre de la fréquence par des vibrations mécaniques de 20 GHz de la structure atomique du semi-conducteur. En augmentant davantage la puissance du laser, les particules vibraient à exactement la moitié de la fréquence des vibrations mécaniques.
«Ce comportement peut être interprété comme différentes manifestations d’un cristal temporel,» a indiqué Alexander Kuznetsov, scientifique au PDI. «Les résultats démontrés ajoutent une nouvelle dimension à la physique des systèmes quantiques à plusieurs corps ouverts, permettant des fréquences plusieurs ordres de grandeur plus élevées qu’auparavant et présentant de nouvelles façons de contrôler les dynamiques émergentes, ce qui conduit aux fascinants cristaux temporels sur une plateforme semi-conductrice.»
Qu’est-ce qu’un cristal temporel ?
Depuis que le physicien lauréat du prix Nobel Frank Wilczek a proposé sa théorie il y a plus d’une décennie, les chercheurs sont à la recherche des insaisissables «cristaux temporels» — des systèmes à plusieurs corps composés de particules et de quasi-particules comme les excitons, les photons et les polaritons qui, dans leur état quantique le plus stable, varient périodiquement dans le temps. La théorie de Wilczek se concentrait sur une question intrigante : l’état le plus stable d’un système quantique de nombreuses particules peut-il être périodique dans le temps ?
Il a été rapidement démontré que le comportement des cristaux temporels ne peut pas se produire dans des systèmes isolés (qui n’échangent pas d’énergie avec l’environnement). Cependant, cette question a motivé les scientifiques à rechercher les conditions dans lesquelles un système ouvert (qui échange de l’énergie avec l’environnement) peut développer un tel comportement.
Applications potentielles
Selon l’équipe de recherche, cet expérimentation montre un potentiel pour l’utilisation des cristaux temporels dans la photonique intégrée et les micro-ondes. «En raison du couplage amélioré par les polaritons entre les phonons GHz et les photons proches de l’infrarouge, les résultats ont un potentiel d’applications dans la conversion (quantique) entre les fréquences micro-ondes et optiques,» a déclaré Paulo Ventura Santos, scientifique principal au PDI.
Les systèmes optoélectroniques non linéaires à base de semi-conducteurs — des dispositifs capables de convertir l’énergie lumineuse en énergie électrique ou vice versa — attirent une attention particulière pour leurs applications potentielles en photonique sur puce. Cependant, ils sont notoirement difficiles à étudier en raison des complexes à plusieurs corps (tels que les cristaux temporels) qui déterminent leurs propriétés électroniques et optiques.
«Une compréhension plus approfondie des régimes bien définis au sein de ces systèmes à plusieurs corps, comme ceux que l’équipe PDI/CAB-IB a aidé à identifier, peut aider à élucider ces dynamiques internes — et à son tour aider à développer des méthodes pour contrôler et exploiter ces systèmes pour des applications,» a conclu Gonzalo Usaj, le leader théorique de l’équipe CAB-IB.
Article : « Solid-state continuous time crystal in a polariton condensate with a built-in mechanical clock » – DOI: 10.1126/science.adn7087
Légende illustration : Représentation artistique d’un cristal de temps continu (CT) à base de semi-conducteur. Le CT émerge spontanément grâce aux interactions entre des millions de particules de lumière-matière cohérentes (un condensat) excitées par un laser indépendant du temps (faisceau rouge à gauche). Les oscillations du CT excitent les vibrations GHz du réseau atomique du semi-conducteur (relief ondulé). Ces vibrations agissent comme un métronome interne qui stabilise la fréquence d’oscillation du CT. Le cristal de temps émet ainsi une lumière cohérente dont l’intensité oscille plusieurs milliards de fois par seconde (faisceau blanc modulé à droite). (Image : Institut Paul-Drude d’électronique des solides)