lundi, septembre 15, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Effets quantiques inattendus dans le graphène naturel à double couche

Effets quantiques inattendus dans le graphène naturel à double couche

par La rédaction
3 octobre 2022
en Recherche, Technologie

Une équipe de recherche internationale dirigée par l’Université de Göttingen a détecté des effets quantiques inédits dans des études de haute précision du graphène naturel à double couche et les a interprétés avec l’Université du Texas à Dallas en utilisant leurs travaux théoriques.

Cette recherche fournit de nouvelles informations sur l’interaction entre les porteurs de charge et les différentes phases, et contribue à la compréhension des processus impliqués. La LMU de Munich et le National Institute for Materials Science de Tsukuba, au Japon, ont également participé à ces recherches. Les résultats ont été publiés dans la revue Nature.

Le nouveau matériau qu’est le graphène naturel, une couche très mince d’atomes de carbone, a été découvert pour la première fois par une équipe de recherche britannique en 2004. Entre autres propriétés inhabituelles, le graphène est connu pour sa conductivité électrique extraordinairement élevée. Si deux couches individuelles de graphène naturel sont tordues l’une par rapport à l’autre selon un angle très spécifique, le système devient même supraconducteur, c’est-à-dire qu’il conduit l’électricité sans aucune résistance, et présente d’autres effets quantiques passionnants tels que le magnétisme. Cependant, la production de ces doubles couches de graphène torsadé a jusqu’à présent nécessité un effort technique accru.

Cette nouvelle étude a utilisé la forme naturelle du graphène naturel double couche, qui ne nécessite aucune fabrication complexe. Dans un premier temps, l’échantillon est isolé d’un morceau de graphite en laboratoire à l’aide d’un simple ruban adhésif. Pour observer les effets de la mécanique quantique, l’équipe de Göttingen applique ensuite un champ électrique élevé perpendiculairement à l’échantillon : la structure électronique du système change et une forte accumulation de porteurs de charge d’énergie similaire se produit.

À des températures juste au-dessus du zéro absolu de moins 273,15 degrés Celsius, les électrons du graphène peuvent interagir entre eux – et une variété de phases quantiques complexes émergent de manière totalement inattendue. Par exemple, les interactions entraînent l’alignement des spins des électrons, ce qui rend le matériau magnétique sans autre influence extérieure. En modifiant le champ électrique, les chercheurs peuvent changer en permanence la force des interactions des porteurs de charge dans le graphène à double couche. Dans certaines conditions, la liberté de mouvement des électrons peut être tellement restreinte qu’ils forment leur propre réseau électronique et ne peuvent plus contribuer au transport de la charge en raison de leur interaction répulsive mutuelle. Le système est alors électriquement isolant.

« Les recherches futures peuvent maintenant se concentrer sur l’étude d’autres états quantiques« , expliquent le professeur Thomas Weitz et la doctorante Anna Seiler, de la faculté de physique de l’université de Göttingen. « Pour accéder à d’autres applications, par exemple de nouveaux systèmes informatiques tels que les ordinateurs quantiques, les chercheurs devront trouver comment obtenir ces résultats à des températures plus élevées. Cependant, un avantage majeur du système actuel développé dans notre nouvelle recherche réside dans la simplicité de la fabrication des matériaux. »

Articles à explorer

Utilisation d'un ordinateur quantique pour simuler un processus quantique

Utilisation d’un ordinateur quantique pour simuler un processus quantique

15 septembre 2025
Des lasers pour maîtriser les vibrations quantiques

Des lasers pour maîtriser les vibrations quantiques

14 septembre 2025

Crédit photo : Christoph Hohmann (MCQST Cluster)

Original publication: Anna M. Seiler et al. Quantum cascade of correlated phases in trigonally warped bi-layergraphene. Nature 2022. Doi: 10.1038/s41586-022-04937-1. Text also available via preprint: https://arxiv.org/abs/2111.06413

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: double couchegraphenequantique
Article précédent

Le vent tourne concernant l’utilisation de la combustion du bois pour les énergies renouvelables en Europe

Article suivant

Pour des sols et surfaces impeccables, un balai à vapeur s’impose

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Utilisation d'un ordinateur quantique pour simuler un processus quantique
Quantique

Utilisation d’un ordinateur quantique pour simuler un processus quantique

il y a 5 heures
Les progrès de l'IA renforcent la sécurité et les performances des réacteurs de fusion
Fusion

Les progrès de l’IA renforcent la sécurité et les performances des réacteurs de fusion

il y a 6 heures
Des lasers pour maîtriser les vibrations quantiques
Laser

Des lasers pour maîtriser les vibrations quantiques

il y a 1 jour
Des chercheurs découvrent de nouvelles méthodes pour fabriquer des micropuces plus petites
Industrie technologie

Des chercheurs découvrent de nouvelles méthodes pour fabriquer des micropuces plus petites

il y a 2 jours
Tokyo dévoile une méthode pour créer des nanodiamants jusqu’à 10 nanomètres sans pression
Recherche

Tokyo dévoile une méthode pour créer des nanodiamants jusqu’à 10 nanomètres sans pression

il y a 2 jours
Des capteurs ultra-sensibles traquent la matière noire la plus légère jamais ciblée
Recherche

Des capteurs ultra-sensibles traquent la matière noire la plus légère jamais ciblée

il y a 3 jours
Plus d'articles
Article suivant
"l'appareil tout en un" qui nettoie, désinfecte et assainit les surfaces grâce à la puissance de la simple vapeur d'eau : nettoyeur à vapeur

Pour des sols et surfaces impeccables, un balai à vapeur s'impose

CO2 Battery : Energy Dome et Ørsted s'associent pour des installations de stockage d’énergie

CO2 Battery : Energy Dome et Ørsted s'associent pour des installations de stockage d’énergie

awair capteur CO2

Capteurs co2 en milieu scolaire : le gouvernement prolonge l'aide exceptionnelle

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Utilisation d'un ordinateur quantique pour simuler un processus quantique

Utilisation d’un ordinateur quantique pour simuler un processus quantique

15 septembre 2025
Les progrès de l'IA renforcent la sécurité et les performances des réacteurs de fusion

Les progrès de l’IA renforcent la sécurité et les performances des réacteurs de fusion

15 septembre 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com