Des scientifiques du Collège universitaire de Cork (UCC), en Irlande, ont mis au point un nouvel outil puissant pour trouver la prochaine génération de matériaux nécessaires à l’informatique quantique à grande échelle et tolérante aux pannes.
Cette avancée significative signifie que, pour la première fois, les chercheurs ont trouvé un moyen de déterminer une fois pour toutes si un matériau peut effectivement être utilisé dans certaines micropuces d’informatique quantique.
Ces résultats majeurs, publiés aujourd’hui dans la revue scientifique Science, sont le fruit d’une vaste collaboration internationale qui comprend des travaux théoriques de premier plan menés par le professeur Dung-Hai Lee de l’université de Californie à Berkeley, et des synthèses de matériaux réalisées par les professeurs Sheng Ran et Johnpierre Paglione de l’université de Washington à Saint-Louis et de l’université du Maryland, respectivement.
À l’aide d’un équipement que l’on ne trouve que dans trois laboratoires au monde, les chercheurs du Groupe Davis, basé à l’UCC, ont pu déterminer avec certitude si le ditelluride d’uranium (UTe2), qui est un supraconducteur connu, présentait les caractéristiques requises pour être un supraconducteur topologique intrinsèque.
Un supraconducteur topologique est un matériau unique qui héberge à sa surface de nouvelles particules quantiques appelées fermions de Majorana. En théorie, ces fermions peuvent être utilisés pour stocker de manière stable des informations quantiques sans être perturbés par le bruit et le désordre qui affectent les ordinateurs quantiques actuels. Les physiciens sont à la recherche d’un supraconducteur topologique intrinsèque depuis des décennies, mais aucun matériau découvert jusqu’à présent ne répondait à toutes les exigences.
Depuis sa découverte en 2019, l’UTe 2 a été considéré comme un matériau candidat solide pour la supraconductivité topologique intrinsèque, mais aucune recherche n’avait évalué de manière définitive sa pertinence – jusqu’à présent.
À l’aide d’un microscope à effet tunnel (STM) fonctionnant dans un nouveau mode inventé par Séamus Davis, professeur de physique quantique à l’UCC, une équipe dirigée par Joe Carroll, chercheur doctorant au Davis Group, et Kuanysh Zhussupbekov, boursier postdoctoral Marie Curie, a pu conclure une fois pour toutes si l’UTe2 est le bon type de supraconducteur topologique.
Les expériences réalisées à l’aide du STM « Andreev » – que l’on ne trouve que dans les laboratoires du professeur Davis à Cork, à l’université d’Oxford au Royaume-Uni et à l’université Cornell à New York – ont permis de découvrir que l’UTe2 est bien un supraconducteur topologique intrinsèque, mais pas exactement le type de supraconducteur que les physiciens recherchaient.
Toutefois, cette expérience, la première du genre, constitue une percée en soi. Interrogé sur l’expérience, M. Carroll l’a décrite comme suit : « Traditionnellement, les chercheurs ont recherché des supraconducteurs topologiques en effectuant des mesures à l’aide de sondes métalliques. Ils le font parce que les métaux sont des matériaux simples et qu’ils ne jouent donc aucun rôle dans l’expérience. Ce qui est nouveau dans notre technique, c’est que nous utilisons un autre supraconducteur pour sonder la surface de l’UTe2. Ce faisant, nous excluons de nos mesures les électrons de surface normaux, pour ne conserver que les fermions de Majorana ».
M. Carroll a également souligné que cette technique permettrait aux scientifiques de déterminer directement si d’autres matériaux sont adaptés à l’informatique quantique topologique.
Les ordinateurs quantiques ont la capacité de répondre en quelques secondes à des problèmes mathématiques complexes que les ordinateurs de la génération actuelle mettraient des années à résoudre. À l’heure actuelle, les gouvernements et les entreprises du monde entier se lancent dans une course au développement de processeurs quantiques dotés d’un nombre croissant de bits quantiques, mais la nature capricieuse de ces calculs quantiques freine les progrès significatifs.
Au début de l’année, Microsoft a annoncé le Majorana 1, qui, selon la société, est « la première unité de traitement quantique (QPU) au monde alimentée par un cœur topologique ».
Microsoft a expliqué que pour réaliser cette avancée, il fallait des supraconducteurs topologiques synthétiques basés sur des empilements élaborés de matériaux conventionnels.
Cependant, les nouveaux travaux du groupe Davis signifient que les scientifiques peuvent désormais trouver des matériaux simples pour remplacer ces circuits compliqués, ce qui pourrait conduire à une plus grande efficacité des processeurs quantiques et permettre la présence d’un plus grand nombre de qubits sur une seule puce, nous rapprochant ainsi de la prochaine génération d’informatique quantique.
Article : « Pair wave function symmetry in UTe2 from zero-energy surface state visualization » – DOI : 10.1126/science.adk7219