Gaz de schistes : les alternatives à la fracturation hydraulique

La quasi-totalité des forages de gaz de schiste utilise la fracturation hydraulique. Les enjeux environnementaux soulevés par cette méthode sont à la base des recherches pour trouver de nouvelles techniques.

ALCIMED, société de conseil et d’aide à la décision, revient sur les alternatives existantes ou en phase de recherche et développement à la fracturation hydraulique.

Aujourd’hui, pour récupérer le gaz de schiste, la technique utilisée est la fracturation hydraulique : Elle consiste à injecter un fluide – consistant d’environ 90% d’eau, 8 à 9,5% de « proppants » (sable ou billes de céramique) et 0,5 à 2% d’additifs chimiques – sous très haute pression. Interdite en France depuis 2011, cette technique est remise en question pour son impact environnemental notamment pour les risques de pollution du sous-sol et des ressources en eau. Pour limiter ce risque, l’ensemble des puits doivent être alors recouverts d’une barrière étanche et une membrane de protection doit être installée au sol. Mais est-ce suffisant pour limiter les risques de pollution ? Quelles sont les autres alternatives à cette technique ?

« Aujourd’hui, environ 99% de la production de gaz de schiste utilise la fracturation hydraulique, mais plusieurs techniques alternatives sont actuellement à l’étude. Ces méthodes ne sont elles-mêmes pas exemptes de risques et ne vont pas remplacer la fracturation hydraulique à court terme » a souligné Jean-Philippe Tridant Bel, Directeur de l’activité Energie et Environnement chez ALCIMED.

Les techniques visent essentiellement à remplacer l’eau par un autre fluide ou gel.

– La fracturation au gel de propane est en cours d’utilisation sur environ 400 puits au Canada et aux États-Unis (plus de 1.000 fracturations déjà effectuées). Le gel est injecté dans le puits amenant du sable et des additifs pour fractionner la roche, et retourne en forme de gaz qui peut être capturé facilement. Le gel de propane donne un meilleur taux de production par rapport à l’eau car un liquide peut être absorbé dans les roches en empêchant le gaz de s’échapper. Malgré le prix initial du gel élevé, la différence du coût total peut être réduite en réutilisant ou vendant le gel capturé. Le gel apporte un risque d’explosion et donc des installations spécifiques et précautions sont indispensables.

– L’eau peut aussi être remplacée par du propane pur (non-inflammable), ce qui permettrait d’éliminer l’utilisation de produits chimiques. Le propane pur est injecté sous forme liquide, puis redevient gazeux et peut être alors capturé. Les premiers puits utilisant cette méthode ont été fracturés avec succès en décembre 2012 aux États-Unis.

– La technique utilisant du dioxyde de carbone injecté dans le sol sous forme supercritique – en phase liquide – et récupéré sous forme gazeuse, est déjà utilisée dans l’État du Wyoming (États-Unis) grâce à leur réseau de pipelines CO2 qui rendent cette technique économiquement viable. La construction de nouveaux réseaux et la séparation du CO2 du gaz de schiste ajoutent des coûts supplémentaires qui retiennent la diffusion de cette technique. Dans chaque dépôt de gaz de schiste, une grande fraction du gaz naturel colle à la roche. Le CO2 a une adhésion à la roche plus élevée ce qui permettrait de remplacer le fioul en stockant le carbone en même temps et pourrait donc faire partie de projets de CCS (Carbon Capture and Storage). Le succès de la fracturation avec CO2 dépend de la disponibilité de l’eau près du site et la monétisation des bénéfices de la capture de CO2.

– La fracturation exothermique non-hydraulique (ou fracturation sèche) injecte de l’hélium liquide, des oxydes de métaux et des pierres ponce dans le puits. Les oxydes de métaux réagissent l’un avec l’autre en formant des réactions exothermiques. L’hélium se transforme en forme gazeuse sous la chaleur des réactions exothermiques, multipliant le volume par 757 et fissurant la roche. Et, les pierres ponce renforcent les fissures afin que le gaz de schiste puisse s’échapper. Les larges quantités d’hélium utilisé dans cette technique limitent l’application car c’est un gaz rare. Il est abondant sur terre, mais difficile à extraire.

– Le dernier fluide considéré pour le remplacement de l’eau est l’azote. Il existe quatre techniques dont la dernière est rarement utilisée dans des opérations commerciales à cause de la nécessité des équipements spéciaux : la fracturation à gaz pur (vapeur), à mousse, énergisée et cryogène (liquide).

o La fracturation à gaz pur est peu nocive pour l’environnement et est surtout utilisée dans des formations de roche qui sont sensibles à l’eau à maximum 1500 m de profondeur. Cette technique empêche le gonflement d’argile qui serait autrement causé par l’eau. De plus, il existe un risque que les fissures se referment car l’azote est un gaz inerte et compressible avec une faible viscosité, ce qui en fait un pauvre transporteur de proppants.

o La fracturation à mousse utilise une combinaison d’azote (53 à 95% du volume), d’eau et d’additifs. On contrôle la viscosité du fluide de fracturation en faisant évoluer sa composition (plus on met d’azote, moins il est nécessaire de mettre des additifs – mais il ne faut pas oublier que les additifs permettent d’éviter que les fissures se referment). Aussi, plus il y a d’azote dans le mélange, moins cette technique de fracturation est chère et risquée pour l’environnement.

o Les fluides énergisés contiennent 53% moins de volume d’azote, balancé par l’eau et des additifs. Cette technique est utilisée à de plus grandes profondeurs car la concentration de volume liquide est plus élevée.

Il existe aussi d’autres méthodes qui visent à éliminer ou diminuer des fluides et /ou des additifs et à augmenter la production de gaz. Ces méthodes sont encore à un stade très expérimental :

La stimulation par arc électrique (ou la fracturation hydroélectrique) libère le gaz en provoquant des microfissures dans la roche par ondes acoustiques. Cette technique provoque des microfissures dans la roche qui sont encore trop petites pour permettre une exploitation. L’avantage principal de cette méthode est de n’utiliser ni eau, ni proppants ou produits chimiques. En revanche, le besoin en électricité peut être problématique.

La fracturation pneumatique injecte de l’air comprimé dans la roche-mère pour la désintégrer par ondes de chocs. L’utilisation de l’eau est donc complètement éliminée et remplacée par l’air. Le problème principal reste les produits chimiques.

La fracturation par chocs thermiques : en jouant sur les écarts de températures, des fissures peuvent être créées en injectant de l’eau froide à grande profondeur. Aujourd’hui, les fissures créées sont encore trop petites pour permettre une exploitation et la consommation d’eau est élevée.

"Les alternatives à la fracturation hydraulique tentent de diminuer significativement la consommation d’eau et/ou d’augmenter la production de gaz. Certaines très séduisantes en sont encore à un stade expérimental et demandent à être plus largement testées. A court terme, pour les opérations en cours et à venir, l’enjeu est avant tout de minimiser l’impact environnemental de la fracturation hydraulique tant pour les volumes traités que pour la qualité des eaux traitées" conclut Jean-Philippe Tridant Bel.

Articles connexes

11 Commentaires
Le plus ancien
Le plus récent Le plus populaire
Commentaires en ligne
Afficher tous les commentaires
pierreerne

“du dioxyde de carbone injecté dans le sol sous forme supercritique – en phase liquide – et récupéré sous forme gazeuse”. Le CO2 sous forme supercritique n’est pas plus en phase liquide qu’en phase gazeuse. Au delà des points critiques, les deux phases ne sont plus distinctes.

Pastilleverte

au lieu de diboliser les GDS, voilà une démarche intelligente dont il faut que tous les acteurs concernés de la recherche, française et européenne, s’en emparent au plus vite. Exploité de manière “raisonnable” ou pour faire moderne “soutenable”, les GDS sont un atout de premier plan pour la transition énergétique. Ils permettraient également de se libérer de producteurs gaziers par ailleurs peu fréquentables pour diverses raisons, Russie ou Qatar. Ce dernier point étant rarement évoqué, l’oin finirait par accepter des thèses “complotistes” du genre : “les anti GDS sont manipulés en sous main par les grands lobbys producteurs de gaz” (et ils ne s’en rendent même pas compte…)

Tas

Même si une méthode “propre” était trouvée pour exploiter les GDS, il est désespérant de constater que l’on souhaite encore prolonger notre dépendance aux énergies fossiles…Nous n’avons vraiment rien compris.

Bachoubouzouc

Mais notre dépendance aux énergies fossiles à court terme est déjà actée ! On ne parle pas d’exploiter ces GDS dans cinquante ans, c’est de maintenant dont on parle ! Donc le choix devant lequel on se trouve aujourd’hui n’est pas GDS ou ENR, mais GDS ou charbon. Alors faute de mieux, le marché européen actuel se tourne clairement vers le charbon. Après, il serait intéressant de savoir enfin de manière indéniable si économiquement et écologiquement le GDS est mieux ou moins bien que le charbon.

Maitreludard

Les gaz de schistes existants resteront bien à l’abri sous nos pieds. Leur exploitation est tout sauf urgente, il n’y a pas de date de péremption inscrit sur les gisements, merci bien. Il sera toujours temps de les exploiter lorsque la situation énergétique sera vraiment difficile. Lorsqu’on saura en faire usage pour des services énergétiques indispensables plutôt que pour entretenir pour quelques années de plus l’illusion d’un monde infini. (Faudra juste se méfier des États-Unis qui auront déjà bouffé leurs réserves et son connus pour leur propension à prendre par la force les ressources des autres.)

Tas

De choisir entre la corde et le poison n’est pas ma façon de penser, je pense qu’il y a toujours une autre solution. Qui nécessite peut-être des choix courageux mais aucunement de baisser les bras et de prendre la moins mauvaise des solutions. Nous avons tout de même la chance en France d’avoir un potentiel d’ENR bien supérieur et bien plus facile à exploiter que les GDS. Et quand on aura finit d’exploiter les GDS, on fera quoi?

Bachoubouzouc

“De choisir entre la corde et le poison n’est pas ma façon de penser, je pense qu’il y a toujours une autre solution.” L’énergie est un marché complexe où les solutions miracle n’existent pas. Chaque technologie fait payer ses avantages dans certains domaines par des inconvénients dans d’autres. S’il y avait une meilleure solution, ça se saurait car il y aurait forcément un pays dans le monde à l’avoir mis en place. “Nous avons tout de même la chance en France d’avoir un potentiel d’ENR bien supérieur et bien plus facile à exploiter que les GDS.” Je trouve votre affirmation (potentiel supérieur et plus facile) un peu gratuite : Les allemands ne sont pas loin de saturer leur marché en ENR, pourtant elles ne produisent que 23% de leur électricité, ce pour un prix délirant, et sans guère diminuer leurs émissions polluantes. “Et quand on aura finit d’exploiter les GDS, on fera quoi?” Grande question ! Et GDS ou pas GDS, elle se pose de la même manière.

Sedcha

“Et quand on aura finit d’exploiter les GDS, on fera quoi?” On exploitera les hydrates de méthane océaniques;il y en a largement pour plusieurs siècles de consommation,surtout couplés avec les ENRs intermittentes(éolien et PV),pour assurer le suivi de charge.

Pierrotb001

Et tous ces additifs, à votre avis quels sont ils? Exactement la même dangerosité que ceux qu’ils balancent dans l’eau pour fracturer! Il se retrouveront à 200km avec les cours d’eau souterrains et contamineront la nappe! OU alors j’ai raté quelquechose. La fracturation hydraulique avec 99% d’eau, finalement c’est pas si mal! Cette histoire est navrante, Quand pourront nous supprimer notre addications aux énergies fossiles?

pierreerne

@PierrotB001 A mon avis, vous avez trop lu “Voyage au centre de la terre” de Jules Verne. En raison de la pression hydrostatique des roches, à 3 000 m de profondeur (de l’ordre de 600 bars) le moins interstice est rapidement refermé. Alors, les “cours d’eau souterrains” à cette profondeur, c’est vraiment de la science-fiction. Oui, vous avez raté quelque chose : un cours de géologie.

Pierrotb001

Ok pierrerne, dans ce cas pouvez vous affimer et démontrer ce que vous avancez?