Les circuits supraconducteurs sont utilisés à la TU Wien et à l’ISTA pour créer de nouveaux types de systèmes quantiques beaucoup plus faciles à contrôler et à régler que les systèmes quantiques naturels tels que les atomes.
De nombreux objets que nous traitons habituellement en physique quantique ne sont visibles qu’à l’aide de microscopes spéciaux – des molécules ou des atomes individuels, par exemple. Cependant, les objets quantiques sur lesquels Elena Redchenko travaille à l’Institut de physique atomique et subatomique de l’Université technique de Vienne peuvent même être vus à l’œil nu (avec un peu d’effort) : Ils mesurent des centaines de micromètres. Ils sont encore minuscules pour l’homme, mais gigantesques en termes de physique quantique.
Ces énormes objets quantiques sont des circuits supraconducteurs, des structures dans lesquelles le courant électrique circule à basse température sans aucune résistance. Contrairement aux atomes, qui ont des propriétés fixes, déterminées par la nature, ces structures artificielles sont extrêmement personnalisables et permettent aux scientifiques d’étudier différents phénomènes physiques de manière contrôlée. Elles peuvent être considérées comme des « atomes artificiels », dont les propriétés physiques peuvent être ajustées à volonté.
En les couplant, on a créé un système qui peut être utilisé pour stocker et récupérer de la lumière – une condition préalable importante pour d’autres expériences quantiques. Cette expérience a été réalisée dans le groupe de Johannes Fink à l’ISTA, avec la collaboration théorique de Stefan Rotter à l’Institut de physique théorique de la TU Wien. Les résultats viennent d’être publiés dans la revue « Physical Review Letters ».
Des « atomes » personnalisés
L’une des principales propriétés de la physique quantique est que certains objets ne peuvent prendre que des valeurs énergétiques très spécifiques. « Un électron se déplaçant autour d’un noyau atomique peut adopter un état d’énergie inférieur ou supérieur, mais jamais un état intermédiaire », explique Elena Redchenko, auteur principal de la présente publication. « Toutes les valeurs intermédiaires ne sont tout simplement pas possibles physiquement. Avec nos atomes artificiels, cependant, nous pouvons choisir quelles valeurs d’énergie doivent être autorisées. Pour chaque atome artificiel, nous pouvons définir exactement la distance entre les valeurs d’énergie physiquement permises ».
Des micro-ondes sont envoyées à travers un fil métallique spécial (un résonateur) qui passe directement devant les atomes artificiels supraconducteurs. Ces micro-ondes influencent maintenant les atomes artificiels supraconducteurs : une partie du rayonnement micro-ondes peut passer du fil aux atomes artificiels – et inversement. L’intensité de cette interaction peut également être ajustée de manière spécifique.
« Nous pouvons montrer que les photons sont échangés entre les micro-ondes du fil et les atomes artificiels d’une manière précisément prévisible », indique Elena Rechenko. « Cela n’est possible que parce que nos atomes artificiels nous donnent une grande liberté d’ingénierie pour adapter notre système à nos besoins exacts. Cela signifie que nous pouvons maintenant réaliser des choses qui seraient impensables avec des atomes ou d’autres objets quantiques naturels ».
Impulsions lumineuses quantiques et mémoire quantique
Si les atomes artificiels sont adaptés correctement, il est possible de créer des rythmes d’impulsions lumineuses très particuliers. « Nous envoyons une courte impulsion classique de micro-ondes dans le fil, mais l’interaction avec les atomes artificiels peut créer une série d’impulsions lumineuses quantiques, séparées par des intervalles de temps que nous pouvons contrôler. C’est comme une minuterie quantique sur puce », explique Elena Rechenko.
« Dans nos travaux, nous avons montré la flexibilité de ce système et la précision avec laquelle il peut être utilisé pour des expériences quantiques très différentes », ajoute Elena Rechenko. « Par exemple, vous pouvez l’utiliser pour générer des photons individuels, clairement séparés, ce qui est important pour de nombreuses expériences. Mais vous pouvez également l’utiliser pour stocker temporairement des photons pendant un certain temps jusqu’à ce qu’ils soient à nouveau libérés – c’est une autre technique qui promet de nouvelles applications passionnantes. »
Légende illustration : Image microscopique de la structure – Crédit TU Wien
Article : « Observation of Collapse and Revival in a Superconducting Atomic Frequency Comb » – DOI : 10.1103/PhysRevLett.134.063601
Auteur : Florian Aigner