Dans la course à l’énergie propre, l’hydrogène produit par électrolyse de l’eau fait figure de champion. Les scientifiques explorent des catalyseurs innovants, mêlant cobalt et manganèse, pour remplacer les coûteux métaux précieux. Longtemps énigmatique, le rôle du manganèse dans ces catalyseurs vient d’être déchiffré par une équipe de chercheurs allemands. Cette découverte ouvre la voie à une production d’hydrogène plus efficace et économique.
Des scientifiques issus de plusieurs institutions allemandes prestigieuses ont conjugué leurs efforts pour décrypter le fonctionnement des catalyseurs cobalt-manganèse dans la production d’hydrogène par électrolyse de l’eau. L’équipe, réunissant des chercheurs de l’Université de la Ruhr à Bochum, des Instituts Max Planck pour les Matériaux Durables et la Conversion de l’Énergie Chimique, du Centre de Recherche de Jülich et de l’Université de Duisburg-Essen, a publié ses conclusions dans la revue « Matériaux énergétiques avancés ».
La professeure Tong Li, responsable de la caractérisation à l’échelle atomique à l’Université de la Ruhr à Bochum, a précisé : «La collaboration entre plusieurs instituts nous a permis d’observer les processus à la surface de l’électrode avec différentes méthodes – et cette combinaison a été la clé du succès.» Cette approche pluridisciplinaire a permis de dévoiler les mécanismes complexes à l’œuvre dans ces catalyseurs.
Le rôle essentiel du manganèse mis en lumière
En appliquant une tension électrique, l’eau peut être divisée en hydrogène et en oxygène. L’étape limitante de cette réaction est l’évolution de l’oxygène. Les chercheurs sont donc à la recherche de catalyseurs optimaux pour cette étape de la réaction.
Les catalyseurs à base de cobalt présentant une structure spinelle sont généralement peu performants et instables sur le long terme pour la production d’hydrogène. Cependant, l’incorporation de manganèse améliore considérablement leurs performances. L’équipe de recherche a employé diverses techniques d’analyse pour comprendre les processus se déroulant à la surface des catalyseurs pendant l’électrolyse de l’eau.
Les scientifiques ont combiné la tomographie par sonde atomique, la microscopie électronique en transmission, la spectroscopie d’absorption de structure fine des rayons X et la spectroscopie de photoémission X. Cette approche multi-technique a permis de visualiser la distribution spatiale des atomes et d’analyser les changements chimiques à la surface du catalyseur.
Un mécanisme de « va-et-vient » du manganèse
Les résultats de l’étude ont révélé un phénomène inattendu : le manganèse se dissout de la surface du spinelle de cobalt pendant la réaction, puis s’y redépose. La professeure Tong Li a illustré ce processus en le comparant à «un passager dans un bus qui monte et descend constamment».
Ce mécanisme de dissolution et de re-déposition du manganèse explique l’efficacité accrue des catalyseurs cobalt-manganèse. Il permet de maintenir une surface catalytique active et stable sur une longue période, favorisant ainsi la production d’hydrogène.
Implications pour l’avenir de la production d’hydrogène
La compréhension de ce mécanisme offre de nouvelles possibilités pour l’optimisation des catalyseurs utilisés dans l’électrolyse de l’eau. Les chercheurs pourront désormais concevoir des matériaux plus performants et durables, en tirant parti du comportement dynamique du manganèse.
Ces progrès scientifiques contribueront à rendre la production d’hydrogène plus efficace et économique, favorisant ainsi le développement de cette source d’énergie propre. L’hydrogène, en tant que vecteur énergétique, joue un rôle important dans la transition vers des systèmes énergétiques plus durables et respectueux de l’environnement.
Légende illustration : Biao He prépare un échantillon pour la tomographie par sonde atomique. Cette méthode peut être utilisée pour visualiser la distribution spatiale à l’intérieur des surfaces d’électrocatalyseurs, atome par atome. © RUB, Kramer
Biao He et al.: Effects of Dynamic Surface Transformation on the Activity and Stability of Mixed Co-Mn Cubic Spinel Oxides in the Oxygen Evolution Reaction in Alkaline Media, dans : Advanced Energy Materials, 2024, DOI: 10.1002/aenm.202403096