MME2026 728x90
jeudi, février 5, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Les scientifiques japonais décodent l'énigme millénaire du verre en transition

Les scientifiques japonais décodent l’énigme millénaire du verre en transition

par La rédaction
10 janvier 2025
en Matériaux, Technologie

Le verre, présent dans notre quotidien, cache des mystères physiques encore non élucidés. Pourquoi certaines vitres médiévales restent-elles rigides après des siècles? Comment les liquides super-refroidis, ni tout à fait solides ni tout à fait liquides, se comportent-ils? Ces questions, parmi d’autres, animent la recherche scientifique.

Le verre, bien que d’apparence ordinaire, détient une physique interne complexe que les scientifiques peinent encore à comprendre. Les vitraux des édifices médiévaux, par exemple, ont gardé leur rigidité pendant des siècles grâce à des molécules figées dans un désordre perpétuel. De même, les liquides super-refroidis ne se conforment pas à un arrangement cristallin à longue portée, mais ne possèdent pas non plus l’énergie nécessaire pour se mouvoir librement comme des liquides ordinaires. Des recherches supplémentaires s’imposent pour dévoiler les secrets de ces systèmes complexes.

Dans une étude publiée dans Nature Materials, des chercheurs de l’Institut des sciences industrielles de l’Université de Tokyo ont employé des simulations informatiques avancées pour modéliser le comportement des particules fondamentales dans un liquide super-refroidi vitreux. Leur approche reposait sur le concept de l’énergie d’activation d’Arrhenius, qui représente la barrière énergétique qu’un processus doit surmonter.

Par exemple, l’énergie requise pour réorganiser des particules dans un matériau désordonné. Le terme «comportement d’Arrhenius» décrit un processus dépendant des fluctuations thermiques aléatoires, où la vitesse diminue exponentiellement avec l’augmentation de la barrière énergétique. Toutefois, les situations nécessitant un réarrangement coopératif des particules, surtout à basses températures, peuvent être encore plus rares, menant à des relations dites super-Arrhenius.

L’étude a démontré pour la première fois la relation entre l’ordre structural et le comportement dynamique des liquides à un niveau microscopique.

«À l’aide de l’analyse numérique dans un modèle informatique de liquides formant du verre, nous avons montré comment les réarrangements fondamentaux des particules peuvent influencer leur ordre structural et leur comportement dynamique,» a déclaré Seiichiro Ishino, auteur principal de l’étude. Les chercheurs ont identifié un processus nommé « T1 » qui maintient l’ordre formé à l’intérieur du liquide. Si le processus T1 perturbe l’ordre local, il implique un mouvement indépendant des particules, conduisant à un comportement de type Arrhenius. En revanche, si le réarrangement T1 préserve l’ordre local de manière coopérative, son impact se propage, entraînant un comportement super-Arrhenius.

«Nos recherches offrent une nouvelle perspective microscopique sur l’origine de la coopérativité dynamique dans les substances formant du verre. Nous prévoyons que ces résultats contribueront à un meilleur contrôle des dynamiques des matériaux, améliorant ainsi la conception des matériaux et les processus de fabrication du verre,» a affirmé Hajime Tanaka, co-auteur principal. Cela pourrait inclure la création de verre plus résistant et durable pour les smartphones et d’autres applications technologiques.

Légende illustration : Des chercheurs de l’Institut des sciences industrielles de l’Université de Tokyo étudient la dynamique des réarrangements moléculaires coopératifs dans les matériaux vitreux à l’aide de simulations informatiques, ce qui pourrait permettre d’améliorer la fabrication du verre. Crédit : Institute of Industrial Science, The University of Tokyo

Articles à explorer

Une nouvelle technique met le tissu rendu sous son meilleur jour

Une nouvelle technique met le tissu rendu sous son meilleur jour

19 janvier 2026
Comment les chercheurs font progresser les technologies pour les centres de données

Comment les chercheurs font progresser les technologies pour les centres de données

21 décembre 2025

Article : ‘Microscopic structural origin of slow dynamics in glass-forming liquids’ / ( 10.1038/s41563-024-02068-8 ) – Institute of Industrial Science, The University of Tokyo – Publication dans la revue Nature Materials

Source : Université de Tokyo

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: liquidesphysiquesimulationverre
Article précédent

Des chercheurs allemands percent les secrets de dégradation des batteries Li-soufre

Article suivant

Le matériau ultrafin qui promet de transformer nos appareils électroniques

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Overview of the OEW-based droplet dispensing system. a Schematic diagram of the microchip. b Equivalent circuit diagram
Intelligence artificielle

Projeter de la lumière pour distribuer des liquides : vers des microgouttelettes ultra-précises

il y a 19 heures
The nanoporous structure allows the gold to interact with light in a way that would otherwise not be possible.
Optique

La transformation de l’or conduit à de nouvelles propriétés électroniques et optiques

il y a 1 jour
Des scientifiques génèrent de l'électricité grâce à une structure inspirée de la turbine Tesla
Recherche

Des scientifiques génèrent de l’électricité grâce à une structure inspirée de la turbine Tesla

il y a 1 jour
Utiliser l'IA générative pour aider les scientifiques à synthétiser des matériaux complexes
Matériaux

Utiliser l’IA générative pour aider les scientifiques à synthétiser des matériaux complexes

il y a 1 jour
Fabrication-Functionalization-Integration-Application process schematic of molecular electronic devices.
Nanotechnologie

Au-delà du silicium : l’électronique à l’échelle d’une seule molécule

il y a 1 jour
From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.
Recherche

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

il y a 2 jours
Researchers used a nonlinear metasurface to experimentally demonstrate skyrmions that can be switched between electric a
Optique

Un dispositif commute des impulsions térahertz entre des skyrmions électriques et magnétiques

il y a 3 jours
A broad overview of the inorganic interface engineering strategies, along with deep analysis of the mechanisms on regula
Batterie

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

il y a 3 jours
Plus d'articles
Article suivant
Le matériau ultrafin qui promet de transformer nos appareils électroniques

Le matériau ultrafin qui promet de transformer nos appareils électroniques

Une nouvelle MRAM à contrôle électrique bouleverse le stockage des données numériques

Une nouvelle MRAM à contrôle électrique bouleverse le stockage des données numériques

Une base de données spectrale pour donner une seconde vie à nos vêtements abandonnés

Une base de données spectrale pour donner une seconde vie à nos vêtements abandonnés

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

MME2026 300x600

Inscription newsletter

Tendance

University of Texas at Dallas researchers Bernadette Magalindan BS’21, MS’25 (left) and Dr. Shuang (Cynthia) Cui evaluat
Isolation

Un matériau à base de bois pourrait réduire les coûts énergétiques

par La rédaction
5 février 2026
0

Kim Horner Des chercheurs de l'Université du Texas à Dallas et leurs collaborateurs ont développé et breveté...

Susie Dai

Des algues génétiquement modifiées éliminent les microplastiques de l’eau

5 février 2026
Geolinks lève 6M € pour sa technologie de surveillance du sous-sol

Geolinks lève 6M € pour sa technologie de surveillance du sous-sol

5 février 2026
Des astronomes découvrent une ancienne galaxie spirale barrée

Des astronomes découvrent une ancienne galaxie spirale barrée

5 février 2026
University of Miami Rosenstiel School scientist Fabrizio Lepiz-Conejo surveys a colony of staghorn coral 

Un nouveau modèle d’IA peut aider à l’alerte précoce du risque de blanchiment des coraux

5 février 2026

Points forts

Des astronomes découvrent une ancienne galaxie spirale barrée

Un nouveau modèle d’IA peut aider à l’alerte précoce du risque de blanchiment des coraux

Projeter de la lumière pour distribuer des liquides : vers des microgouttelettes ultra-précises

Sprinklers et conformité incendie : comprendre les normes applicables

Cigarette électronique : l’Anses publie un rapport prudent sur les risques sanitaires du vapotage

Bioéthanol 2025 : une croissance de 15% malgré l’attentisme des automobilistes

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

University of Texas at Dallas researchers Bernadette Magalindan BS’21, MS’25 (left) and Dr. Shuang (Cynthia) Cui evaluat

Un matériau à base de bois pourrait réduire les coûts énergétiques

5 février 2026
Susie Dai

Des algues génétiquement modifiées éliminent les microplastiques de l’eau

5 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com