dimanche, janvier 18, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats

Se servir du champ magnétique pour alimenter les capteurs intelligents

par La rédaction
15 avril 2020
en Recherche, Technologie

L’électricité qui éclaire nos maisons et alimente nos appareils génère également de petits champs magnétiques qui sont présents tout autour de nous. Les scientifiques ont mis au point un nouveau mécanisme capable de récolter cette énergie et de la convertir en suffisamment d’électricité pour alimenter des réseaux de capteurs de la prochaine génération.

« Tout comme la lumière du soleil reste une source d’énergie gratuite que nous utilisons, les champs magnétiques le sont tout autant« , a déclaré Shashank Priya, professeur de science et d’ingénierie des matériaux et vice-président associé pour la recherche à Penn State. « Cette énergie omniprésente est présente dans nos maisons, nos bureaux, nos espaces de travail et nos voitures. Elle est partout, et nous avons la possibilité de la récupérer et de la convertir en électricité utile« .

Une équipe dirigée par des scientifiques du Penn State a mis au point un dispositif qui fournit une puissance de sortie 400 % supérieure à celle des autres technologies de pointe qui traitent des champs magnétiques de faible intensité.

Cette technologie a des implications dans la conception d’immeubles intelligents, qui nécessiteront des réseaux de capteurs sans fil auto-alimentés. « Dans les bâtiments, on sait que si vous automatisez beaucoup de fonctions, vous pourriez en fait améliorer l’efficacité énergétique de manière très significative« , a déclaré Priya. « Les bâtiments sont l’un des plus gros consommateurs d’électricité aux États-Unis. Ainsi, même une baisse de quelques pourcents de la consommation d’énergie pourrait représenter ou se traduire par des économies de plusieurs mégawatts. Ce sont les capteurs qui permettront d’automatiser ces contrôles, et cette technologie est un moyen réaliste d’alimenter ces capteurs« .

Les chercheurs ont conçu des dispositifs en couche mince (plusieurs centimètres), qui peuvent être placés sur ou près des appareils, des lumières ou des cordons d’alimentation là où les champs magnétiques sont les plus forts. Toutefois, ces champs se dissipent rapidement loin de la source de courant électrique.

Lorsqu’il est placé à 10 cm d’un radiateur, l’appareil produit suffisamment d’électricité pour alimenter 180 réseaux de LED, et à 15 cm, suffisamment pour alimenter un réveil numérique. Les scientifiques ont rapporté ces résultats dans le journal Energy and Environmental Science.

« Ces résultats constituent des avancées significatives vers une alimentation durable pour les capteurs intégrés et les systèmes de communication sans fil« , a déclaré Min Gyu Kang, professeur assistant de recherche à Penn State et co-auteur principal de l’étude.

Les scientifiques ont utilisé une structure composite, en superposant deux matériaux différents. L’un de ces matériaux est magnétostrictif, ce qui convertit un champ magnétique en contrainte, et l’autre est piézoélectrique, ce qui convertit la contrainte, ou les vibrations, en un champ électrique. Cette combinaison permet au dispositif de transformer un champ magnétique en un courant électrique.

Articles à explorer

Datacentres USA : qui doit payer pour l'électricité face aux délais de construction des centrales ?

Datacentres USA : qui doit payer pour l’électricité face aux délais de construction des centrales ?

17 janvier 2026
Research team at KIMM’s Department of Bionic Machinery (Dr. Shin Hur pictured on the left)

Un capteur ultrasonore capable de mesurer la tension artérielle sans brassard et de manière non invasive

14 janvier 2026

Le dispositif a une structure en forme de poutre dont une extrémité est fixe tandis que l’autre est libre de vibrer en réponse à un champ magnétique appliqué. Un aimant monté à l’extrémité libre du faisceau amplifie le mouvement et contribue à une production plus élevée d’électricité.

« La beauté de cette recherche est qu’elle utilise des matériaux connus, mais qu’elle conçoit l’architecture de manière à maximiser la conversion du champ magnétique en électricité« , a déclaré Priya. « Cela permet d’obtenir une forte densité de puissance sous des champs magnétiques de faible amplitude« .

Rammohan Sri Ramdas, professeur assistant de recherche à Penn State, a participé à la recherche.

Hyeon Lee et Prashant Kumar, assistants de recherche à Virginia Tech, et Mohan Sanghadasa, chercheur principal au Centre de l'aviation et des missiles, Commandement du développement des capacités de combat de l'armée américaine, ont également contribué aux travaux.

Certains des membres de l'équipe de cette étude ont été financés par l'Office of Naval Research et les autres par la National Science Foundation.
Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: capteurchamp magnetiqueefficacite energetiqueélectricité
Article précédent

EEG : Un modèle allemand de réussite de la transition énergétique

Article suivant

Et si la moitié des toits suisses produisaient de l’électricité ?

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Prof. Paul Eastham and Luisa Toledo Tude.
Recherche

Une nouvelle théorie suggère que nous pourrions augmenter l’énergie utile obtenue de la lumière solaire

il y a 1 jour
Cultiver des matériaux ultra-purs innovants pour l'électronique de demain
Graphène

Cultiver des matériaux ultra-purs innovants pour l’électronique de demain

il y a 2 jours
Un métal inspiré de l'enveloppe des graines permet aux ailes de changer de forme d'elles-mêmes
Matériaux

Un métal inspiré de l’enveloppe des graines permet aux ailes de changer de forme d’elles-mêmes

il y a 2 jours
Jinsong Zhang (left) and Mario El Kazzi with a test cell of the all-solid-state battery developed at the Paul Scherrer I
Batterie

Un nouveau procédé pour des batteries tout solide stables et durables

il y a 2 jours
Researchers Brad Theilman, center, and Felix Wang, behind, unpack a neuromorphic computing core at Sandia National Labor
Intelligence artificielle

Les ordinateurs inspirés de la nature excellent étonnamment en mathématiques

il y a 3 jours
L'invention d'un chimiste danois pourrait rendre la contrefaçon obsolète
Recherche

L’invention d’un chimiste danois pourrait rendre la contrefaçon obsolète

il y a 3 jours
Plus d'articles
Article suivant

Et si la moitié des toits suisses produisaient de l'électricité ?

Vers un réseau de chaleur à 82 % renouvelable à Champs-sur-Marne

Des piles à combustible de forte puissance pour alimenter les navires

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

UBC Okanagan doctoral student Mahmoud Babalar examines a sample of the dual-layer modified matrix membrane that can help

Une innovation qui bloque la libération des nanoplastiques dans le lixiviat des décharges

18 janvier 2026
Electron microscope image of algae pre-treated with espresso to create stronger contrasts.

Le café comme substitut d’agent de coloration en microscopie électronique

18 janvier 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com