Un four à micro-ondes modifié pour fabriquer des semi-conducteurs de nouvelle génération

Un four à micro-ondes modifié pour fabriquer des semi-conducteurs de nouvelle génération

Un four à micro-ondes domestique modifié par un professeur d’ingénierie de l’université Cornell contribuera à la préparation de la prochaine génération de téléphones portables, d’ordinateurs et d’autres appareils électroniques, après qu’il a été démontré que l’invention permettait de relever un défi majeur pour l’industrie des semi-conducteurs.

La recherche est détaillée dans un article publié dans Applied Physics Letters. L’auteur principal est James Hwang, professeur de recherche au département de science et d’ingénierie des matériaux.

À mesure que les micropuces continuent de rétrécir, le silicium doit être dopé, ou mélangé, avec des concentrations plus élevées de phosphore pour produire le courant souhaité. Les fabricants de semi-conducteurs approchent maintenant d’une limite critique où le chauffage des matériaux hautement dopés à l’aide de méthodes traditionnelles ne permet plus de produire des semi-conducteurs toujours fonctionnels.

La Taiwan Semiconductor Manufacturing Company (TSMC) a théorisé que les micro-ondes pourraient être utilisées pour activer les dopants excédentaires, mais tout comme les fours à micro-ondes domestiques qui chauffent parfois les aliments de manière inégale, les précédents recycleurs à micro-ondes produisaient des “ondes stationnaires” qui empêchaient une activation cohérente des dopants.

TSMC s’est associé à Hwang, qui a modifié un four à micro-ondes pour contrôler sélectivement l’endroit où se produisent les ondes stationnaires. Une telle précision permet d’activer correctement les dopants sans chauffer excessivement ou endommager le cristal de silicium.

Mais comme les micropuces continuent de rétrécir, le silicium doit être dopé, ou mélangé, avec des concentrations plus élevées de phosphore pour produire le courant souhaité. Les fabricants de semi-conducteurs approchent maintenant d’une limite critique où le chauffage des matériaux hautement dopés à l’aide de méthodes traditionnelles ne permet plus de produire des semi-conducteurs toujours fonctionnels.

Nous avons besoin de concentrations de phosphore qui sont supérieures à sa solubilité à l’équilibre dans le silicium. Cela va à l’encontre de la nature“, a déclaré Hwang. “Le cristal de silicium se dilate, provoquant d’immenses tensions et le rendant potentiellement inutile pour l’électronique“.

La Taiwan Semiconductor Manufacturing Company (TSMC) avait théorisé que les micro-ondes pouvaient être utilisées pour activer les dopants excédentaires, mais tout comme les fours à micro-ondes domestiques qui chauffent parfois les aliments de manière inégale, les précédents recycleurs à micro-ondes produisaient des “ondes stationnaires” qui empêchaient une activation cohérente des dopants. TSMC s’est donc associé à Hwang, qui a modifié un four à micro-ondes pour contrôler sélectivement l’endroit où se produisent les ondes stationnaires. Une telle précision permet d’activer correctement les dopants sans chauffer excessivement ou endommager le cristal de silicium.

Chauffage Electrique Mural Intelligent 2000W à Faible Consommation d’Energie Chauffage Electrique Mural 2000W à Faible Consommation d’Energie pour Maison
Consulter les derniers prixConsulter les derniers prix
Partenaire Amazon.fr

Cette découverte pourrait être utilisée pour produire des matériaux semi-conducteurs et des appareils électroniques apparaissant vers l’année 2025“, a déclaré Hwang, qui a déposé deux brevets pour le prototype.

Quelques fabricants produisent actuellement des matériaux semi-conducteurs de 3 nanomètres“, a déclaré Hwang. “Cette nouvelle approche par micro-ondes peut potentiellement permettre aux principaux fabricants tels que TSMC et Samsung de descendre à seulement 2 nanomètres.”

Cette percée pourrait modifier la géométrie des transistors utilisés dans les micropuces. Pendant plus de 20 ans, les transistors ont été conçus pour se tenir debout comme des nageoires dorsales afin de pouvoir en placer davantage sur chaque micropuce, mais les fabricants ont récemment commencé à expérimenter une nouvelle architecture dans laquelle les transistors sont empilés horizontalement. Les matériaux excessivement dopés que permet le recuit par micro-ondes seraient la clé de cette nouvelle architecture.

La recherche a été soutenue par le ministère de la Science et de la Technologie de Taïwan, et la recherche continue est soutenue par une subvention Ignite : Cornell Research Lab to Market grant from Cornell’s Center for Technology Licensing.

Syl Kacapyr est directeur associé du marketing et de la communication pour le College of Engineering.

[ Illustration / Crédit : Cornell.edu ]

[ Communiqué ]

Articles connexes

0 Commentaires
Commentaires en ligne
Afficher tous les commentaires