Les avancées récentes en chimie offrent des perspectives intéressantes pour l’industrie des semi-conducteurs organiques. En effet, une équipe de chercheurs japonais a mis au point une molécule innovante qui pourrait transformer la fabrication des dispositifs électroniques organiques.
Des chimistes de l’institut RIKEN ont développé une molécule qui améliore les performances des dispositifs électroniques organiques tout en étant plus stable que les alternatives précédentes. Cette découverte pourrait faciliter son utilisation dans les processus de fabrication industrielle.
Les semi-conducteurs organiques
Les dispositifs électroniques conventionnels sont fabriqués à partir de semi-conducteurs rigides comme le silicium. Les molécules semi-conductrices organiques sont présents dans des appareils comme les téléviseurs et les écrans de téléphones portables utilisant des diodes électroluminescentes organiques (OLED).
« Les dispositifs électroniques organiques sont de solides candidats pour des appareils fins, légers et flexibles, difficiles à réaliser avec des matériaux inorganiques », explique Kazuo Takimiya du Centre RIKEN pour la science de la matière émergente, qui a dirigé la recherche.
Le rôle crucial des dopants
Les semi-conducteurs organiques nécessitent l’aide de molécules appelées dopants pour améliorer le flux de charge. Par exemple, certains dopants contiennent des électrons à des niveaux d’énergie élevés, facilement libérables dans un semi-conducteur. Toutefois, les dopants organiques existants, qui donnent des électrons, sont souvent instables, rendant leur conception, synthèse et manipulation difficiles, selon Kazuo Takimiya.
L’équipe de Kazuo Takimiya avait précédemment étudié des dérivés d’une molécule appelée tétraphényl dipyranylidène, capable de donner des électrons aux matériaux semi-conducteurs organiques. En apportant des modifications supplémentaires à cette molécule, ils ont amélioré sa stabilité à haute température.
L’ajout de groupes amine à base d’azote, qui poussent les électrons vers la région centrale de la molécule, s’est révélé être l’altération la plus prometteuse. Les calculs théoriques ont suggéré que la molécule résultante, nommée DP7, possède des électrons à un niveau d’énergie suffisamment élevé. Les expériences ont montré qu’elle est également très stable et peut être ajoutée aux dispositifs par dépôt sous vide, l’un des processus les plus utilisés dans la fabrication des semi-conducteurs.
Applications pratiques et résultats prometteurs
L’équipe a incorporé DP7 dans plusieurs dispositifs électroniques organiques, dont un transistor à effet de champ organique (OFET) composé d’un film mince de buckminsterfullerène, ou « buckyballs ».
Les chercheurs ont constaté que l’interface entre le buckminsterfullerène et DP7 présentait une résistance électrique beaucoup plus faible que les variantes précédentes du dopant, affichant l’une des résistances les plus faibles de tout OFET dopé aux électrons rapporté à ce jour. Cela améliorera le flux d’électrons dans le buckminsterfullerène.
De plus, le dispositif est resté stable, ne montrant aucune dégradation après avoir été stocké sous atmosphère inerte pendant deux semaines.
Perspectives industrielles
DP7 est facilement fabriqué à partir de produits chimiques disponibles dans le commerce en utilisant seulement deux réactions chimiques, et Kazuo Takimiya est optimiste quant à son utilisation potentielle dans l’industrie. « Pour les dispositifs commerciaux, il pourrait être utilisé pour améliorer la conductivité de la couche de transport d’électrons dans les OLED, qui sont fabriquées par des processus sous vide. »
Les chercheurs recherchent désormais d’autres dopants stables ayant des capacités de donation d’électrons encore plus grandes.
Illustration principale : Les chercheurs du RIKEN ont réussi à améliorer le flux d’électrons dans une couche de buckminsterfullerène (illustré) dans un dispositif électronique organique en utilisant un nouveau dopant appelé DP7. © Laguna Design / Science Photo Library
Matsuo, T., Kawabata, K. & Takimiya, K. A novel n-type molecular dopant with a closed-shell electronic structure applicable to the vacuum-deposition process. Advanced Materials 36, 2311047 (2024). doi: 10.1002/adma.202311047