Dans le domaine des batteries portables, une équipe de chercheurs chinois a réalisé une avancée significative. En s’inspirant de la nature, ils ont réussi à augmenter considérablement la stabilité des hydrogels utilisés dans les batteries au sodium-ion face au sel. Cette découverte pourrait avoir des implications majeures pour l’avenir de l’énergie portable.
Les batteries au sodium-ion sont considérées comme une alternative prometteuse aux batteries au lithium-ion. Elles sont moins coûteuses et plus respectueuses de l’environnement. Leur développement nécessite l’adaptation de nombreux nouveaux composants à l’ion sodium. L’un des composants les plus essentiels est l’électrolyte, qui, dans le cas des batteries minces et flexibles, se présente souvent sous forme d’hydrogel.
Ces matériaux flexibles, contenant de l’eau, absorbent les sels de sodium dissous et peuvent conduire les ions. Malgré l’adéquation des hydrogels, un problème non résolu est la séparation de phase et la précipitation du sel aux concentrations élevées nécessaires pour une large fenêtre de stabilité électrochimique.
Une solution inspirée de la nature
Guanglei Cui et ses collègues de l’Académie des sciences chinoise à Qingdao ont réussi à modifier un hydrogel pour une batterie au sodium-ion afin qu’il absorbe nettement plus de sel de manière stable et sécurisée. Pour ce faire, ils ont utilisé une technique également employée dans la nature pour la régulation de la liaison eau-sel dans les grosses biomolécules : la méthylation.
Dans les protéines, la méthylation entraîne le «cappage» des groupes amine et amide, qui deviennent moins accessibles pour les molécules d’eau qui jouent un rôle dans la réticulation au sein de la structure protéique et la dissolution des ions de sel. Comme les polymères de polyamide utilisés pour les hydrogels contiennent également des groupes amide, leur réticulation extensive par les molécules d’eau peut provoquer une précipitation du sel, ce qui entraîne la dégradation de l’électrolyte.
Des résultats prometteurs
L’équipe a comparé un hydrogel fait d’un polyamide commun à un hydrogel fait d’un polyamide avec des groupes amide méthylés. Ce dernier a pu absorber nettement plus de sel que la variante originale. Même à des concentrations de sel record, l’électrolyte hydrogel est resté transparent et stable.
La plus grande teneur en sel signifie que la plage de tension utilisable électrochimiquement de la cellule peut être étendue. De plus, l’équipe n’a observé aucun signe de désintégration aux électrodes, une meilleure stabilité cyclique et la cellule de batterie assemblée a atteint une capacité supérieure à la variante non méthylée. Il a même été possible d’utiliser du papier d’aluminium bon marché comme collecteur de courant dans ce système.
En synthèse
La méthylation simple du polyamide pourrait également être adaptée à d’autres technologies, par exemple, dans le développement de médicaments, pour rendre les hydrogels plus résistants aux sels et donc plus stables. Cette avancée dans la recherche sur les batteries au sodium-ion pourrait ouvrir la voie à des solutions d’énergie portable plus efficaces et plus respectueuses de l’environnement.
Pour une meilleure compréhension
Qu’est-ce que les batteries au sodium-ion ?
Les batteries au sodium-ion sont une alternative prometteuse aux batteries au lithium-ion. Elles sont moins coûteuses et plus respectueuses de l’environnement, mais leur développement nécessite l’adaptation de nombreux nouveaux composants à l’ion sodium.
Quel est le rôle de l’hydrogel dans ces batteries ?
L’hydrogel est utilisé comme électrolyte dans ces batteries. Il absorbe les sels de sodium dissous et peut conduire les ions. Cependant, il présente un problème de séparation de phase et de précipitation du sel aux concentrations élevées nécessaires pour une large fenêtre de stabilité électrochimique.
Quelle est la solution trouvée par les chercheurs ?
Les chercheurs ont réussi à modifier un hydrogel pour une batterie au sodium-ion afin qu’il absorbe nettement plus de sel de manière stable et sécurisée. Pour ce faire, ils ont utilisé une technique également employée dans la nature pour la régulation de la liaison eau-sel dans les grosses biomolécules : la méthylation.
Quels sont les avantages de cette modification ?
Cette modification permet à l’hydrogel d’absorber nettement plus de sel que la variante originale. Même à des concentrations de sel record, l’électrolyte hydrogel est resté transparent et stable. De plus, la cellule de batterie assemblée a atteint une capacité supérieure à la variante non méthylée.
Quelles sont les implications de cette découverte ?
Cette avancée pourrait ouvrir la voie à des solutions d’énergie portable plus efficaces et plus respectueuses de l’environnement. De plus, la méthylation simple du polyamide pourrait également être adaptée à d’autres technologies, par exemple, dans le développement de médicaments, pour rendre les hydrogels plus résistants aux sels et donc plus stables.
Article : « Bio-Inspired Methylation Approach to Salt-Concentrated Hydrogel Electrolytes for Long-Life Rechargeable Batteries » – DOi:10.1002/anie.202311589