La recherche pour élaborer un ordinateur quantique efficace et évolutif est jalonnée de défis techniques et scientifiques. Une récente étude publiée dans Nature Communications apporte un éclairage nouveau sur cette quête, en mettant en lumière une méthode innovante pour la manipulation des qubits.
La problématique de l’évolutivité dans l’informatique quantique
Contrairement aux puces de silicium des ordinateurs classiques, les puces quantiques ne peuvent être simplement agrandies pour augmenter leur capacité. Les qubits, éléments de base de l’ordinateur quantique, doivent être suffisamment proches pour se coupler, mais cette proximité devient problématique lorsqu’il s’agit d’intégrer des millions de qubits.
Pour résoudre ce dilemme, des chercheurs de la coopération JARA entre le Forschungszentrum Jülich et l’Université RWTH d’Aix-la-Chapelle, ainsi que de l’Académie polonaise des sciences, ont exploré l’utilisation d’un électron navette pour pallier les contraintes d’espace sur les puces quantiques.
Le fonctionnement de l’électron navette
Dans les qubits à semi-conducteurs, l’information quantique est codée via le spin des électrons situés dans des points quantiques, des structures semi-conductrices à l’échelle nanométrique. L’électron navette permet de capturer ces électrons et de les transporter de manière contrôlée sans perdre l’information quantique.
Les démonstrations antérieures avaient réussi à transporter des électrons sur de courtes distances. La nouvelle étude a amélioré la vitesse de l’électron navette de quatre ordres de grandeur par rapport aux démonstrations précédentes, et a révélé que la cohérence des qubits est étonnamment préservée, voire prolongée, lorsqu’un électron est déplacé sur de plus longues distances.
Implications scientifiques et sociales
Les ordinateurs quantiques promettent de résoudre des problèmes hors de portée des superordinateurs actuels. Pour cela, des architectures comportant des milliers, voire des millions, de qubits sont nécessaires. L’étude actuelle suggère que l’intégration d’un électron navette dans des architectures semi-conductrices évolutives représente une voie prometteuse. Cette méthode présente l’avantage d’être compatible avec la production industrielle de portes logiques utilisées pour les puces informatiques classiques.
Ces découvertes pourraient contribuer à la construction d’un prototype fonctionnel d’ordinateur quantique à base de qubits semi-conducteurs.
Légende illustration : Puce quantique à semi-conducteur avec navette quantique développée par la collaboration JARA. Crédit : Mats Volmer
Publication originale : La recherche, dirigée par T. Struck, M. Volmer, L. Visser et leurs collègues, a été publiée sous le titre Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe dans la revue Nature Communications. Le document est accessible en ligne et peut être consulté via le lien DOI suivant : https://doi.org/10.1038/s41467-024-45583-7.