Cellules solaires organiques stables et bon marché : découverte prometteuse

Cellules solaires organiques stables et bon marché : découverte prometteuse

En raison des récentes améliorations de l’efficacité avec laquelle les cellules solaires fabriquées à partir de semi-conducteurs organiques (à base de carbone) peuvent convertir la lumière du soleil en électricité, l’amélioration de la stabilité à long terme de ces dispositifs photovoltaïques devient un sujet de plus en plus important. Les applications réelles de la technologie exigent que l’efficacité du dispositif photovoltaïque soit maintenue pendant de nombreuses années.

Pour résoudre ce problème clé, les chercheurs ont étudié les mécanismes de dégradation des deux composants utilisés dans la couche absorbant la lumière des cellules solaires organiques : les matériaux “donneurs d’électrons” et “accepteurs d’électrons“. Ces deux composants sont nécessaires pour séparer la paire électron-trou liée formée après l’absorption d’un photon en électrons et trous libres qui constituent le courant électrique.

Dans cette nouvelle étude publiée dans Joule, une équipe internationale de chercheurs dirigée par le Cavendish Laboratory de l’université de Cambridge a examiné pour la première fois les voies de dégradation des matériaux donneurs et accepteurs d’électrons.

L’étude détaillée du matériau donneur d’électrons distingue les travaux de recherche actuels des études précédentes et apporte de nouvelles connaissances importantes dans ce domaine. En particulier, l’identification d’un processus de désactivation ultrarapide propre au matériau donneur d’électrons n’a jamais été observée auparavant et offre un nouvel angle d’approche pour la dégradation des matériaux dans les cellules solaires organiques.

Pour comprendre comment ces matériaux se dégradent, les chercheurs de Cavendish ont travaillé au sein d’une équipe internationale avec des scientifiques du Royaume-Uni, de Belgique et d’Italie. Ensemble, ils ont combiné des études de stabilité des dispositifs photovoltaïques, où la cellule solaire opérationnelle est soumise à une lumière intense proche de celle du soleil, avec une spectroscopie laser ultrarapide réalisée à Cambridge.

Grâce à cette technique laser, ils ont pu identifier un nouveau mécanisme de dégradation du matériau donneur d’électrons impliquant une torsion de la chaîne polymère. Ainsi, lorsque le polymère torsadé absorbe un photon, il subit une désactivation extrêmement rapide à l’échelle de la femtoseconde (un millionième de milliardième de seconde).

Ce processus indésirable est suffisamment rapide pour l’emporter sur la génération d’électrons et de trous libres à partir d’un photon, ce que les scientifiques ont pu mettre en corrélation avec l’efficacité réduite de la cellule solaire organique après qu’elle a été exposée à la lumière solaire simulée.

Il était intéressant de constater que quelque chose d’apparemment mineur comme la torsion d’une chaîne de polymères pouvait avoir un effet aussi important sur l’efficacité de la cellule solaire“, a déclaré le Dr Alex Gillett, auteur principal de l’article. “À l’avenir, nous prévoyons d’exploiter nos résultats en collaborant avec des groupes de chimistes pour concevoir de nouveaux matériaux donneurs d’électrons avec des squelettes polymères plus rigides. Nous espérons que cela réduira la propension du polymère à se tordre et améliorera ainsi la stabilité du dispositif de cellule solaire organique.

Grâce à leurs propriétés uniques, les cellules solaires organiques peuvent être utilisées dans un large éventail d’applications pour lesquelles les cellules photovoltaïques traditionnelles au silicium ne conviennent pas. Il peut s’agir de fenêtres génératrices d’électricité pour les serres qui transmettent les couleurs de lumière nécessaires à la photosynthèse, ou même de cellules photovoltaïques qui peuvent être enroulées pour faciliter le transport et la production d’électricité mobile.

Ainsi, en identifiant le mécanisme de dégradation à résoudre, la recherche actuelle rapproche directement de la réalité la prochaine génération de matériaux et d’applications photovoltaïques.

Credit: dr. alex gillet, cavendish laboratory, university of cambridge

[ Communiqué ]

Articles connexes