Des chercheurs ont mis au point des résonateurs photoniques sur puce fonctionnant dans les régions ultraviolet (UV) et visible du spectre, affichant une perte de lumière UV record. Ces résonateurs pourraient ouvrir la voie à des dispositifs miniaturisés pour des applications telles que la détection spectroscopique, la communication sous-marine et le traitement de l’information quantique.
Des résonateurs photoniques pour de nouvelles applications
Les nouveaux résonateurs développés par les chercheurs jettent les bases pour augmenter la taille, la complexité et la fidélité de la conception des circuits intégrés photoniques UV (PIC). Selon Chengxing He de l’Université de Yale, membre de l’équipe de recherche, ces travaux constituent une bonne base pour la construction de circuits photoniques fonctionnant à des longueurs d’onde UV.
Une perte de lumière record
Les chercheurs ont décrit dans la revue Optics Express du groupe de publication Optica comment ils ont réalisé des micro-résonateurs à base d’alumine et comment ils ont obtenu une perte de lumière UV exceptionnellement faible en combinant le bon matériau avec une conception et une fabrication optimisées. Hong Tang, leader de l’équipe de recherche, a déclaré que les PIC UV ont atteint un point critique où la perte de lumière pour les guides d’ondes n’est plus significativement pire que pour leurs homologues visibles.
Des matériaux et une conception optimisés
Les micro-résonateurs ont été fabriqués à partir de films minces d’alumine de haute qualité préparés par Carlo Waldfried et Jun-Fei Zheng d’Entegris Inc. en utilisant un procédé de dépôt atomique en couche (ALD) hautement évolutif. L’alumine, avec sa large bande interdite d’environ 8 eV, est transparente aux photons UV, qui ont une énergie bien inférieure (environ 4 eV) à la bande interdite. Cela signifie que les longueurs d’onde UV ne sont pas absorbées par ce matériau.
Des résonateurs à anneau performants
Les chercheurs ont appliqué ce qu’ils ont appris des guides d’ondes pour créer des résonateurs à anneau avec un rayon de 400 microns. Ils ont constaté que la perte de rayonnement peut être supprimée à moins de 0,06 dB/cm à 488,5 nm et à moins de 0,001 dB/cm à 390 nm lorsque la profondeur de gravure était supérieure à 80 nm dans un film d’alumine de 400 nm d’épaisseur. Les résonateurs à anneau fabriqués ont montré un facteur de qualité (Q) record de 1,5 × 106 à 390 nm (dans la partie UV du spectre) et un facteur Q de 1,9 × 106 à 488,5 nm (une longueur d’onde pour la lumière bleue visible).
En synthèse
Les résonateurs photoniques sur puce développés pourraient permettre de nouvelles applications dans des domaines tels que la détection spectroscopique, la communication sous-marine et le traitement de l’information quantique. La compatibilité du procédé de dépôt atomique en couche utilisé pour créer l’alumine avec la technologie CMOS ouvre également la voie à l’intégration CMOS avec la photonique à base d’alumine amorphe.
Pour une meilleure compréhension
Qu’est-ce qu’un résonateur photonique sur puce ?
Un résonateur photonique sur puce est un dispositif qui permet de confiner et de manipuler la lumière à l’échelle nanométrique, en utilisant des structures photoniques intégrées sur une puce électronique.
Quels sont les avantages des résonateurs photoniques sur puce ?
Les résonateurs photoniques sur puce offrent une meilleure intégration, une miniaturisation accrue et une plus grande efficacité énergétique par rapport aux technologies optiques traditionnelles.
Quelles sont les applications potentielles des résonateurs photoniques sur puce ?
Les applications potentielles incluent la détection spectroscopique, la communication sous-marine, le traitement de l’information quantique et l’intégration avec la technologie CMOS.
Qu’est-ce que le facteur de qualité (Q) et pourquoi est-il important ?
Le facteur de qualité (Q) est une mesure de la performance d’un résonateur. Un facteur Q élevé indique une faible perte de lumière, ce qui est essentiel pour des applications telles que la communication et le traitement de l’information.
Qu’est-ce que la technologie CMOS et pourquoi est-elle importante ?
La technologie CMOS (Complementary Metal-Oxide-Semiconductor) est un procédé de fabrication de circuits intégrés largement utilisé dans l’industrie électronique. L’intégration des résonateurs photoniques sur puce avec la technologie CMOS permettrait de combiner les avantages des deux technologies pour créer des dispositifs plus performants et économes en énergie.
Paper: C. He, Y. Wang, C. Waldfried, G. Yang, J.-F. Zheng, S. Hu and H. X. Tang, “Ultra-high Q alumina optical microresonators in the UV and blue bands,” Opt. Express, Vol. 31, Issue 21, pp. 33923-33929 (2023). DOI: https://doi.org/10.1364/OE.492510
Légende illustration principale : Les chercheurs ont créé un résonateur annulaire à base de puce qui fonctionne dans les régions ultraviolette et visible du spectre et qui présente une perte de lumière UV exceptionnellement faible. Le résonateur (petit cercle au milieu) est montré en lumière bleue. Credit : Chengxing He, Yale University
[ Rédaction ]