Les matériaux Kagome, avec leur structure en étoile inspirée d’un motif de vannerie japonaise, ont suscité un vif intérêt dans la communauté scientifique internationale. Leur géométrie cristalline unique confère à ces métaux des propriétés électroniques, magnétiques et supraconductrices remarquables, ouvrant la voie à de nouvelles applications dans le domaine des technologies quantiques.
Le 16 février 2023, l’équipe du Professeur Ronny Thomale de l’Université de Würzburg a publié une prépublication en ligne proposant une théorie novatrice sur la supraconductivité dans les métaux Kagome. Selon cette théorie, les paires de Cooper, essentielles à la supraconductivité, se répartiraient de manière ondulatoire au sein des sous-réseaux du matériau. Cette hypothèse a été confirmée expérimentalement pour la première fois, remettant en question l’idée préconçue d’une distribution uniforme des paires de Cooper dans ces matériaux.
Le Professeur Thomale a déclaré : «Nos recherches initiales sur les métaux Kagome, tels que l’antimoine de vanadium potassium (KV3Sb5), se concentraient sur les effets quantiques des électrons individuels. La découverte du supraconducteur Kagome a suivi la confirmation expérimentale de notre théorie initiale sur le comportement des électrons avec la détection d’ondes de densité de charge il y a deux ans.»
Un phénomène quantique fascinant
À des températures extrêmement basses, proches du zéro absolu (-272°C), les électrons s’apparient pour former des paires de Cooper. Ces paires se condensent en un fluide quantique qui se propage sous forme d’ondes à travers le matériau, permettant une supraconductivité sans résistance. La distribution ondulatoire observée chez les électrons se transmet ainsi aux paires de Cooper.
Hendrik Hohmann, doctorant ayant contribué à ces travaux théoriques, explique : «À des températures ultra-basses d’environ -193 degrés Celsius, les électrons se réorganisent et se distribuent en ondes dans le matériau. Ce phénomène est connu depuis la découverte des ondes de densité de charge.»
L’expérience qui a permis de détecter directement la distribution ondulatoire des paires de Cooper dans un métal Kagome a été menée par Jia-Xin Yin à l’Université des Sciences et Technologies du Sud de la Chine à Shenzhen. Un microscope à effet tunnel équipé d’une pointe supraconductrice capable d’observer directement les paires de Cooper a été utilisé. La conception de cette pointe, se terminant par un seul atome, repose sur l’effet Josephson, une découverte ayant valu le prix Nobel à son inventeur.
Cette avancée technologique permet de mesurer directement la distribution des paires de Cooper, offrant ainsi une vision sans précédent de la supraconductivité à l’échelle atomique.
Perspectives pour l’électronique supraconductrice
Les supraconducteurs Kagome, avec leur modulation spatiale intrinsèque des paires de Cooper, agissent comme des diodes naturelles. Cette propriété unique offre des possibilités passionnantes pour l’électronique supraconductrice et les circuits sans perte.
Le Professeur Thomale conclut : «Les résultats actuels constituent une étape supplémentaire vers des dispositifs quantiques économes en énergie. Bien que ces effets ne soient observables qu’à l’échelle atomique pour le moment, une fois que la supraconductivité Kagome sera réalisable à l’échelle macroscopique, de nouveaux composants supraconducteurs deviendront envisageables.»
Légende illustration : L’illustration met en évidence le motif Kagome qui, nommé d’après un motif japonais de tressage de paniers, ressemble à une série infinie d’étoiles à six branches. Chacune de ces étoiles est composée de trois grilles triangulaires imbriquées, le sous-réseau formant les pointes de l’étoile. (Image : Jörg Bandmann/pixelwg & neongrau)
Article : ‘Chiral kagome superconductivity modulations with residual Fermi arcs’ / ( 10.1038/s41586-024-07798-y ) – University of Würzburg – Publication dans la revue Nature