Une équipe de scientifiques néerlandais a mené une recherche détaillée sur les composants fondamentaux de la lumière. Les résultats obtenus suggèrent des applications potentielles pour l’éclairage LED avancé, l’informatique quantique et les nanocapteurs de haute précision.
Les scientifiques néerlandais ont mis en lumière une caractéristique remarquable des photons, particules élémentaires constituant la lumière. Contrairement aux électrons gravitant autour des atomes, les photons présentent une variété de comportements nettement plus étendue. De plus, leur contrôle s’avère considérablement plus aisé.
À l’instar des électrons, les photons occupent des régions de l’espace décrites par des orbitales. Ces dernières indiquent la probabilité de localiser un photon dans une zone spécifique. Les chercheurs de l’Université de Twente ont démontré qu’il était possible de créer et manipuler ces orbitales photoniques sous diverses formes et symétries, grâce à une conception minutieuse de matériaux spécifiques.
Les résultats de cette étude ouvrent la voie à de nombreuses applications dans les domaines des technologies optiques avancées et de l’informatique quantique. Kozon, premier auteur de l’étude, précise : «Dans la chimie classique, les électrons orbitent toujours autour du minuscule noyau atomique au centre de l’orbitale. Ainsi, la forme d’une orbitale électronique ne peut guère s’écarter d’une sphère parfaite. Avec les photons, les orbitales peuvent adopter n’importe quelle forme extravagante que vous concevez en combinant différents matériaux optiques dans des arrangements spatiaux conçus.»
L’équipe de recherche a mené une étude computationnelle pour comprendre le comportement des photons confinés dans une nanostructure 3D spécifique composée de minuscules pores (un cristal photonique). Ces cavités sont intentionnellement conçues avec des défauts, créant une superstructure qui isole les états photoniques de l’environnement environnant.

Les physiciens Vos et Lagendijk s’enthousiasment : «Compte tenu de la riche boîte à outils en nanotechnologie, il est beaucoup plus facile de concevoir des nanostructures astucieuses avec de nouvelles orbitales photoniques que de modifier des atomes pour réaliser de nouvelles orbitales électroniques et de la chimie.»
Les orbitales photoniques jouent un rôle crucial dans le développement de technologies optiques avancées, telles que l’éclairage efficace, l’informatique quantique et les capteurs photoniques sensibles. Les chercheurs ont également étudié comment ces nanostructures améliorent la densité locale des états optiques, un aspect important pour les applications en électrodynamique quantique en cavité.
Leurs travaux ont révélé que les structures présentant des défauts plus petits offrent une amélioration plus importante que celles dotées de défauts plus grands. Cette caractéristique les rend plus adaptées à l’intégration de points quantiques et à la création de réseaux de photons uniques.
Cette recherche a été menée par une équipe internationale composée de Marek Kozoň, Ad Lagendijk, Matthias Schlottbom, Jaap van der Vegt et Willem Vos de l’Université de Twente. Marek Kozoň, physicien théoricien récemment diplômé des chaires COPS et MACS, travaille désormais chez Pixel Photonics GmbH, une entreprise allemande spécialisée dans les détecteurs de photons uniques.
L’article intitulé « Symétries et fonctions d’onde des photons confinés dans des super-réseaux tridimensionnels à bande interdite photonique » est en libre accès et paraît en ligne dans la Physical Review B (de l’American Physical Society (APS)). DOI: 10.1103/PhysRevB.109.235141