L’énergie renouvelable bon marché est devenue une réalité dans certaines régions du monde, au point de générer occasionnellement un surplus. Une utilisation potentielle de cette énergie excédentaire consiste à convertir le dioxyde de carbone en carburant et autres produits grâce à un dispositif appelé assemblage membrane-électrode.
Une équipe de scientifiques du Lawrence Berkeley National Laboratory (Berkeley Lab) et de l’Université de Californie à Berkeley a développé une nouvelle méthode pour comprendre cette technologie prometteuse via la modélisation physique. L’article, récemment publié dans la revue Nature Chemical Engineering, pourrait aider les chercheurs à améliorer l’efficacité des assemblages membrane-électrode.
Transformation du dioxyde de carbone en produits précieux
Le dioxyde de carbone peut être transformé en matières premières précieuses telles que le monoxyde de carbone et l’éthylène, utilisés par les fabricants pour produire des produits chimiques et des emballages. Une méthode pour y parvenir est l’utilisation des assemblages membrane-électrode, des dispositifs composés de deux électrodes séparées par une membrane. Également utilisés dans les piles à combustible qui transforment des intrants comme l’hydrogène en électricité, ces assemblages pourraient utiliser l’excédent d’énergie renouvelable pour catalyser le dioxyde de carbone en d’autres produits chimiques. Cependant, ces dispositifs rencontrent des problèmes d’efficacité et leur fonctionnement reste partiellement compris.
« Les assemblages membrane-électrode sont des systèmes complexes avec plusieurs couches. Chaque couche contient différentes espèces chimiques, additifs et particules », explique Adam Weber, scientifique principal au Berkeley Lab et auteur correspondant de l’étude. « Souvent, nous ne savons pas vraiment pourquoi les expériences avec ces assemblages produisent certains produits, ou pourquoi elles échouent à convertir un pourcentage plus élevé de dioxyde de carbone. »
Modélisation informatique et prédiction des résultats
La modélisation informatique peut aider à prédire quels paramètres de l’appareil produiront les meilleurs résultats, mais elle est souvent moins précise pour anticiper des problèmes tels que le crossover, où le dioxyde de carbone traverse la membrane au lieu de réagir. Pour améliorer la précision des modèles, les chercheurs ont utilisé la cinétique de Marcus–Hush–Chidsey, une théorie qui n’avait pas été intégrée auparavant dans la modélisation des assemblages membrane-électrode et qui s’avère cruciale pour comprendre le mécanisme de réaction.
Les chercheurs ont validé leur modèle avec des données expérimentales, constatant qu’il prédisait mieux les résultats réels que les modèles précédents. Parmi les avantages, l’utilisation de la cinétique de Marcus–Hush–Chidsey a permis de prendre en compte le rôle de l’orientation de l’eau.
« Avoir un jumeau numérique d’un système permet de sonder un espace de paramètres beaucoup plus vaste et beaucoup plus rapidement que dans les expériences, qui sont généralement complexes et nécessitent des équipements spéciaux. Nous ne pouvons pas voir où se trouve chaque molécule dans une expérience. Mais dans un modèle, nous le pouvons. » indique Adam Weber.
Expériences virtuelles et optimisation des conceptions
L’équipe a ensuite mené des expériences virtuelles avec son modèle pour explorer comment différentes conceptions d’assemblages membrane-électrode se comportaient en termes d’utilisation du dioxyde de carbone et de sélectivité pour les produits souhaités. « Avec ce travail, nous avons montré comment vous pouvez tirer parti des principes de l’ingénierie chimique pour ces technologies avancées qui arrivent en ligne », a-t-il précisé . « Cela nous donne des idées pour optimiser ces conceptions de cellules et matériaux afin que nous puissions aller de l’avant et les améliorer. »
Parmi les variables testées virtuellement par l’équipe figuraient l’épaisseur de la couche de catalyseur et la surface spécifique du catalyseur. Ils ont également découvert des règles de conception concernant l’importance du transport couplé des ions et de l’eau, ainsi que des compromis entre les phénomènes de transport et la cinétique de réaction et de tampon. Tous ces éléments modifient l’efficacité énergétique globale, les produits obtenus et la quantité de dioxyde de carbone convertie.
Adam Weber a indiqué que la prochaine étape de la recherche consiste à augmenter la complexité du modèle pour pouvoir examiner les performances sur la durée de vie d’un assemblage membrane-électrode, entre autres variables.
Légende illustration : Les scientifiques du Berkeley Lab ont mis au point un modèle numérique pour accélérer l’optimisation des assemblages membrane-électrode afin de convertir le CO2 en carburant et autres produits. Crédit : Justin Bui, Francisco Galang et Samantha Trieu/Berkeley Lab
Article : « Exploring CO2 reduction and crossover in membrane electrode assemblies » – DOI: https://www.nature.com/articles/s44286-024-00062-0