En utilisant une machine sur mesure pour lancer des microprojectiles à des vitesses supersoniques, des chercheurs américains ont découvert de nouveaux détails sur la façon dont les collisions métalliques à grande vitesse peuvent former des liaisons atomiques solides et durables, ce qui pourrait améliorer l’impression 3D et d’autres techniques de fabrication.
Lorsqu’une microparticule entre en collision avec un substrat métallique à une vitesse supersonique, un processus connu sous le nom de liaison à l’état solide peut se produire, dans lequel deux métaux sont reliés au niveau atomique. Si les conditions de la liaison sont relativement bien comprises, la microstructure et les propriétés des matériaux formés lors de ces collisions à grande vitesse n’ont pratiquement pas été caractérisées.
Une étude publiée dans Nature Communications détaille à l’échelle du micromètre la force et le gradient des liaisons atomiques à travers les interfaces d’impact supersonique, et présente un cadre pour prédire les résultats de la liaison à l’état solide.
« Cela marque un changement de paradigme dans notre compréhension des relations processus-microstructure-propriété dans la liaison induite par l’impact », a déclaré l’auteur principal Mostafa Hassani, professeur adjoint à la Sibley School of Mechanical and Aerospace Engineering et au département de science et d’ingénierie des matériaux. « Ces résultats permettront une conception fiable et axée sur les performances des technologies de modification de surface, de réparation et de fabrication additive qui s’appuient sur la liaison par impact supersonique. »
L’impression 3D supersonique, également connue sous le nom de « cold spray », permet de produire des matériaux sans les chauffer ni les fondre, ce qui se traduit par des propriétés mécaniques supérieures à celles des procédés de fabrication conventionnels. Ces avantages la rendent particulièrement adaptée aux applications structurelles dans les domaines de l’aérospatiale et de l’énergie.
Pour créer la liaison à l’état solide, les chercheurs ont construit une plate-forme de lancement induite par laser capable d’accélérer avec précision des particules d’aluminium de taille micrométrique à plus de 2 200 miles par heure (ou 3540 km par heure) vers un substrat d’aluminium. Après l’impact, des essais de traction micromécaniques ont été effectués à l’aide d’un microscope électronique à balayage afin de mesurer directement la force d’adhérence à différents endroits de l’interface d’impact.
L’étude a révélé que la force d’adhérence n’est pas uniforme, mais qu’elle varie de manière significative du centre de l’impact vers les bords. En particulier, une faible adhérence existe au centre de l’impact, suivie d’une rapide multiplication par deux de la force d’adhérence qui finit par atteindre un plateau vers les bords extérieurs.
« L’une des principales conclusions est que la forme de l’oxyde natif à l’interface – qu’il s’agisse de couches, de particules ou de débris – dicte le niveau de solidité de la liaison au niveau local », a ajouté M. Hassani. « Plus précisément, les régions où les débris d’oxyde sont dispersés présentent des liaisons beaucoup plus fortes que les régions où la couche d’oxyde est restée pratiquement intacte. »
Pour expliquer la variation de la force d’adhérence, les chercheurs ont mis au point un modèle prédictif qui tient compte de deux facteurs principaux : la pression de contact et l’exposition de la surface. Lorsqu’une microparticule percute le substrat, les forces de cisaillement provoquées par la collision fracturent la couche d’oxyde, exposant ainsi une plus grande partie de la surface métallique. Simultanément, la pression générée par l’impact force cette surface nouvellement exposée à se rapprocher à l’échelle atomique, créant ainsi une forte liaison métallique.
« Cette compréhension ouvre de nouvelles possibilités pour adapter les propriétés interfaciales et concevoir les conditions d’impact – telles que les matériaux des particules et du substrat, la taille des particules, la vitesse et la température – afin d’améliorer la liaison et la force interfaciale », a conclu Qi Tang, étudiant en doctorat et auteur principal de l’étude. « L’étude offre également des pistes pour prévenir l’adhérence. Par exemple, l’ingénierie des structures des matériaux de surface pour empêcher la contamination par les poussières spatiales supersoniques qui se fixent par impact sur les boucliers des vaisseaux spatiaux ou les lentilles des télescopes ».
La recherche a été soutenue par la National Science Foundation et l’Agence japonaise pour la science et la technologie.
Légende illustration : Une plate-forme de lancement induite par laser dans le laboratoire de mécanique extrême, de matériaux et de fabrication de Cornell peut accélérer des microprojectiles à des vitesses supersoniques pour la recherche sur le collage à l’état solide. Crédit : Charissa King-O’Brien/Cornell University
Source : Cornell – Traduction Enerzine.com