Une nouvelle étude montre que l’apprentissage automatique peut contribuer à réduire les déchets de fabrication des textiles en cartographiant avec plus de précision l’évolution des couleurs au cours du processus de teinture.
Les tissus sont généralement teints à l’état humide et leurs couleurs changent en séchant. Il est donc difficile de savoir à quoi ressemblera une pièce de tissu une fois terminée, explique Warren Jasper, professeur au École supérieure de textile Wilson et auteur d’un article sur l’étude.
« Le tissu est teint lorsqu’il est mouillé, mais la teinte cible est celle qui sera obtenue lorsqu’il sera sec et portable. Cela signifie que, si vous avez une erreur de coloration, vous ne le saurez pas tant que le tissu ne sera pas sec », a-t-il indiqué . « Pendant que vous attendez que le tissu sèche, une plus grande quantité de tissu est teintée. Cela entraîne beaucoup de gaspillage, car l’erreur n’est détectée qu’à un stade avancé du processus ».
Le changement de couleur entre l’état humide et l’état sec n’est pas uniforme d’une couleur à l’autre. Cette relation non linéaire signifie que l’intensité du changement de couleur entre l’état humide et l’état sec est propre à chaque couleur et que les données d’un échantillon de couleur ne peuvent pas être facilement transférées à un autre.
Pour résoudre ce problème, Jasper a développé cinq modèles d’apprentissage automatique, dont un réseau neuronal spécialement conçu pour cartographier ce type de relation non linéaire. Il a ensuite entraîné les modèles en saisissant des données visuelles provenant de 763 échantillons de tissus de différentes couleurs, à la fois humides et secs. Chaque teinture prenait plusieurs heures, a expliqué M. Jasper, ce qui a fait de la collecte des données un travail considérable.
Bien que tous ces modèles soient plus performants que les modèles d’apprentissage non-machine en termes de précision, le réseau neuronal s’est avéré nettement plus précis que toute autre option. Le réseau neuronal a montré une erreur aussi basse que 0,01 et une erreur médiane de 0,7 en utilisant CIEDE2000, une formule standardisée de différence de couleur. Les autres modèles d’apprentissage automatique présentaient des fourchettes d’erreur CIEDE2000 comprises entre 1,1 et 1,6, tandis que la ligne de base atteignait 13,8. Dans l’industrie textile, les valeurs CIEDE2000 dépassant 0,8 à 1,0 sont généralement considérées comme hors des limites acceptables.
Ce réseau neuronal pourrait réduire considérablement les déchets causés par les erreurs de couleur, car il permettrait aux fabricants de tissus de mieux prévoir le résultat final du processus de teinture avant que de grandes quantités de tissu n’aient été incorrectement teintes. M. Jasper a déclaré qu’il espérait voir des outils d’apprentissage automatique similaires adaptés plus largement à l’industrie textile.
« Nous sommes un peu à la traîne dans le domaine du textile. L’industrie a commencé à s’orienter davantage vers les modèles d’apprentissage automatique, mais cela a été très lent », a-t-il ajouté . « Ces types de modèles peuvent constituer des outils puissants pour réduire les déchets et améliorer la productivité dans la teinture en continu, qui représente plus de 60 % des tissus teints. »
L’article intitulé « A Controlled Study on Machine Learning Applications to Predict Dry Fabric Color from Wet Samples : Influences of Dye Concentration and Squeeze Pressure, » est publié dans Fibers. L’article est co-écrit par Samuel Jasper. DOI : 2079-6439/13/4/47
Source : NC State U.