MME2026 728x90
mardi, février 3, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats

Libérer l’électron pour mieux le piéger

par La rédaction
17 mai 2018
en Recherche, Technologie

Des chercheurs de l’UNIGE et du MBI de Berlin ont pour la première fois placé un électron dans un double état – ni libéré ni lié-, confirmant une hypothèse des années 70 : Les atomes sont formés d’électrons autour d’un noyau central auquel ils sont liés. Les électrons peuvent aussi être arrachés -ionisés- de leur noyau à l’aide du champ électrique puissant d’un laser.

Dans les années 70, deux théoriciens, Kramers et Henneberger, se sont demandés s’il était possible de libérer l’électron de son noyau tout en le gardant captif du rayon laser. Cette hypothèse, jugée impossible par bon nombre de scientifiques, vient d’être confirmée avec succès par des physiciens de l’Université de Genève (UNIGE) et du Max Born Institut (MBI) de Berlin. Pour la première fois, ils ont réussi non seulement à contrôler la forme de l’impulsion laser afin d’y maintenir l’électron libéré de son noyau, mais aussi à réguler à leur guise la structure électronique de cet atome habillé par le laser. Ils ont également identifié une zone de non droit, surnommée «Vallée de la mort», dans laquelle les physiciens perdent tout pouvoir sur l’électron. Ces résultats, à lire dans la revue Nature Physics, bouleversent les théories et prédictions touchant à l’ionisation de la matière.

Depuis les années 70, plusieurs expériences tentent de confirmer l’hypothèse avancée par les théoriciens Kramers et Henneberger : on peut placer un électron dans un double état, ni libéré ni lié. Piégé dans le laser, l’électron serait forcé de passer et repasser devant son noyau et subirait ainsi le champ électrique du laser combiné à celui du noyau. Ce double état permettrait de contrôler les électrons soumis à la fois au champ électrique du noyau et du laser et ouvrirait la voie à la création de «nouveaux atomes», du point de vue de leur structure électronique, par les physiciens. Mais est-ce possible ?

Agir sur les oscillations naturelles de l’électron

Les théories actuelles déclarent que plus le laser est intense, plus il est facile de ioniser l’atome, c’est-à-dire d’arracher les électrons au champ électrique de leur noyau et de les libérer dans l’espace. «Mais une fois l’atome ionisé, les électrons quittent non seulement le champ électrique du noyau de l’atome, mais aussi celui du laser», explique Jean-Pierre Wolf, professeur à la Section de physique de la Faculté des sciences de l’UNIGE. «Nous avons alors voulu savoir s’il était possible de les piéger dans le laser, une fois libérés de leur noyau, comme le suggère l’hypothèse de Kramers et Henneberger», ajoute-t-il.

Le seul moyen d’y parvenir est de trouver la bonne forme de l’impulsion du laser à appliquer, afin d’imposer à l’électron des oscillations parfaitement semblables pour que son énergie et son état restent stables. «En effet, l’électron oscille naturellement dans le champ du laser, mais ces oscillations ne sont pas régulières et poussent l’électron à changer sans cesse son niveau d’énergie et donc son état, c’est pourquoi il s’échappe du champ électrique du laser», complète Mikhail Ivanov, professeur au Département théorique du MBI de Berlin.

Moduler l’intensité du laser pour éviter la Vallée de la mort

Les physiciens ont testé plusieurs intensités de laser pour d’obtenir la régularité des oscillations de l’électron libéré de son noyau. Ils ont alors fait une découverte surprenante. «Contrairement aux théories actuelles qui suggèrent que plus le laser est intense, plus il est facile de ioniser l’électron, nous avons découvert qu’il y a une limite d’intensité où nous ne pouvons plus ioniser l’atome, constate Mikhail Ivanov. Passé ce seuil, nous retrouvons la possibilité de le juguler.» Les chercheurs ont ainsi nommé cette limite la «Vallée de la mort», proposition faite par le professeur Joe Eberly de l’Université de Rochester.

Après plusieurs réglages, les physiciens de l’UNIGE et du MBI ont réussi pour la première fois à libérer l’électron de son noyau, puis à le piéger dans le champ électrique du laser, comme le suggéraient Kramers et Henneberger. «En appliquant une intensité de cent mille milliards de Watt par cm2, nous avons pu franchir le seuil de la Vallée de la mort et piéger l’atome dans un cycle d’oscillations régulières au sein du champ électrique du laser», s’enthousiasme Jean-Pierre Wolf. A titre de comparaison, l’intensité du Soleil sur la terre est de l’ordre de 100 Watt par m2.

Confirmer une vieille hypothèse qui révolutionne la théorie physique

Articles à explorer

Structural configuration of a hydrogen atom within a diamond crystal

Le mécanisme de génération d’électrons libres par l’hydrogène dans le silicium élucidé pour la première fois

30 janvier 2026
Artistic impression of X-ray four-wave mixing – a technique that reveals how electrons interact with each other or with

Le laser à rayons X suisse (SwissFEL) révèle la danse cachée des électrons

20 janvier 2026

En plaçant l’électron dans un double état, ni lié ni libéré, les chercheurs ont trouvé le moyen de manipuler ses oscillations comme ils le souhaitent, ce qui leur permet d’agir directement sur la structure électrique de l’atome. «Ceci nous offre la possibilité de créer de nouveaux atomes habillés par le champ du laser, avec de nouveaux niveaux d’énergie des électrons», explique Jean-Pierre Wolf. «On pensait que ce double état était impossible à réaliser et nous venons de prouver le contraire. Ceci va jouer un rôle fondamental dans les théories et les prédictions sur la propagation des lasers intenses», conclut-il.

Credit Photo : © UNIGE – Xavier Ravinet (Représentation schématique du potentiel de Kramers Henneberger formé par la juxtaposition du potentiel atomique et d’un puissant faisceau laser.)

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: champ electriqueelectronlaserunige
Article précédent

Roland Garros : une station mobile photovoltaïque qui recharge les smartphones

Article suivant

Hydroélectricité : Un zoom sur cette filière d’innovation permanente

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.
Recherche

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

il y a 1 heure
Researchers used a nonlinear metasurface to experimentally demonstrate skyrmions that can be switched between electric a
Optique

Un dispositif commute des impulsions térahertz entre des skyrmions électriques et magnétiques

il y a 2 heures
A broad overview of the inorganic interface engineering strategies, along with deep analysis of the mechanisms on regula
Batterie

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

il y a 3 heures
Physicists at the University of British Columbia sent a laser beam of an optical centrifuge into helium nano-droplets do
Nanotechnologie

Un nouveau centrifugeur optique aide les physiciens à percer les mystères des superfluides

il y a 9 heures
Dor Tillinger and Wonbae Lee, two researchers in the Penn State College of Engineering, prepare a glass substrate with m
Batterie

La biologie de l’anguille électrique inspire une puissante batterie en gel

il y a 1 jour
Using an affordable 3D printer and the CRAFT method, researchers created a model human hand from a single feedstock
Impression

Impression 3D : des répliques abordables et réalistes, aussi complexes qu’une main humaine

il y a 1 jour
Two microwave channels act as hot and cold heat reservoirs, highlighted by a reddish and a bluish glow, respectively. Th
Quantique

Un nouveau réfrigérateur quantique tire parti du bruit problématique

il y a 1 jour
With three atomic clouds whose spins (blue) are entangled with each other at a distance, the researchers can measure the
Quantique

Des mesures quantiques avec des nuages atomiques intriqués

il y a 1 jour
Plus d'articles
Article suivant

Hydroélectricité : Un zoom sur cette filière d'innovation permanente

100% de notre énergie à partir de sources renouvelables ? réponses aux sceptiques

Bâtiments positifs en énergie : DualSun lève 2,4 millions d'euros

Commentaires 1

  1. collongues says:
    il y a 8 ans

    environ 1000 w/m2 que le soleil donne à la surface de la terre (900 c est plus juste)

    Répondre

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

MME2026 300x600

Inscription newsletter

Tendance

La chaleur des profondeurs terrestres pourrait alimenter la transition mondiale vers l'énergie propre
Géothermie

La chaleur des profondeurs terrestres pourrait alimenter la transition mondiale vers l’énergie propre

par La rédaction
3 février 2026
0

Les nouvelles technologies développées pour extraire le pétrole et le gaz des profondeurs de la Terre ont...

From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

3 février 2026
Researchers used a nonlinear metasurface to experimentally demonstrate skyrmions that can be switched between electric a

Un dispositif commute des impulsions térahertz entre des skyrmions électriques et magnétiques

3 février 2026
A broad overview of the inorganic interface engineering strategies, along with deep analysis of the mechanisms on regula

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

3 février 2026
Les véhicules terrestres à hydrogène offrent une voie vers des aéroports plus propres

Les véhicules terrestres à hydrogène offrent une voie vers des aéroports plus propres

3 février 2026

Points forts

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

Les véhicules terrestres à hydrogène offrent une voie vers des aéroports plus propres

Un nouveau centrifugeur optique aide les physiciens à percer les mystères des superfluides

Cancer du pancréas : une trithérapie élimine la tumeur chez la souris, un espoir majeur

Voyager 1, la sonde légendaire, s’apprête à franchir le cap historique du jour-lumière

La biologie de l’anguille électrique inspire une puissante batterie en gel

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

La chaleur des profondeurs terrestres pourrait alimenter la transition mondiale vers l'énergie propre

La chaleur des profondeurs terrestres pourrait alimenter la transition mondiale vers l’énergie propre

3 février 2026
From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

3 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com