lundi, décembre 15, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
L'observation au laser d'électrons en rotation pulvérise le record mondial de précision

L’observation au laser d’électrons en rotation pulvérise le record mondial de précision

par La rédaction
1 mars 2024
en Laser, Technologie

La physique nucléaire, avec ses expériences de haute précision, continue de nous éclairer sur les composants fondamentaux de notre univers. Récemment, une équipe de physiciens du Jefferson Lab, une installation du Département de l’Énergie des États-Unis, a réalisé une percée significative dans la mesure de la polarisation des faisceaux d’électrons, surpassant un record qui tenait depuis près de trois décennies.

Un Record Battu

Dans un article évalué par des pairs et publié dans la revue Physical Review C, une collaboration entre les chercheurs du Jefferson Lab et des utilisateurs scientifiques a rapporté une mesure de la polarisation d’un faisceau d’électrons avec une précision jamais atteinte auparavant. « Personne n’a mesuré la polarisation d’un faisceau d’électrons avec cette précision dans aucun laboratoire dans le monde », a déclaré Dave Gaskell, physicien nucléaire expérimental au Jefferson Lab et co-auteur de l’article.

La Polarimétrie Compton

La technique utilisée, la polarimétrie Compton, implique la détection de photons dispersés par des particules chargées, telles que les électrons. Cette méthode repose sur l’effet Compton, où la lumière laser et un faisceau d’électrons sont mis en collision. Les électrons et les photons portent une propriété appelée spin, essentielle pour les physiciens sondant le cœur de la matière à l’échelle la plus infime.

Le système laser du polarimètre Compton, utilisé pour mesurer le spin parallèle des électrons, est aligné lors de l’expérience sur le rayon du calcium au Jefferson Lab. (Photo du Jefferson Lab/Dave Gaskell)

Avantages Collatéraux

La précision ultra-élevée a été atteinte lors de l’Expérience sur le Rayon du Calcium (CREX), menée en tandem avec l’Expérience sur le Rayon du Plomb (PREX-II). Ces expériences visaient à sonder les noyaux d’atomes de poids moyen et lourds pour obtenir des informations sur la structure de leur « peau de neutron ». Les résultats ont des implications pour les propriétés des étoiles à neutrons et confirment certaines calculs théoriques à une précision de centaines de millionièmes de nanomètre.

Le système laser du polarimètre Compton prépare l’état de polarisation de la lumière laser verte pendant le déroulement de l’expérience CREX dans le hall A du Jefferson Lab. (Photo du Jefferson Lab/Dave Gaskell)

Une Incertitude Certaine

Lors de CREX, la polarisation du faisceau d’électrons a été mesurée en continu via la polarimétrie Compton avec une précision de 0,36%, surpassant les 0,5% rapportés lors de l’expérience SLD du SLAC. Cette précision réduit considérablement les incertitudes systématiques et statistiques, permettant une interprétation plus stricte des résultats théoriques.

Cette avancée prépare le terrain pour des expériences phares futures au Jefferson Lab, telles que MOLLER, qui mesurera la charge faible sur un électron, un test du Modèle Standard de la physique des particules. D’autres projets, comme le Collisionneur Électron-Ion (EIC) et SoLID, bénéficieront également de cette précision sans précédent dans la polarimétrie des faisceaux d’électrons.

Articles à explorer

Lauren Riddiford, Aleš Hrabec et Jeffrey Brock (de gauche à droite) dans la salle blanche de Park Innovaare, située juste à côté du PSI. C'est là que de nouvelles structures magnétiques sont créées et modifiées avec précision à l'aide de la technologie laser. (Crédit : © Institut Paul Scherrer PSI / Mahir Dzambegovic)

Le laser dessine des paysages magnétiques sur mesure

13 décembre 2025
Des chercheurs de Sydney maîtrisent la lumière « bruyante » dans des lasers miniatures

Des chercheurs de Sydney maîtrisent la lumière « bruyante » dans des lasers miniatures

2 décembre 2025

« Cela a franchi une barrière », a déclaré Allison Zec, co-auteure de l’étude. « Cela va rendre nos résultats plus significatifs et va faire du Jefferson Lab une installation plus forte pour faire de la physique à l’avenir. »

Légende illustration : Le laser du polarimètre Compton résonne à l’intérieur d’une cavité optique verrouillée pendant le déroulement de l’expérience CREX. (Photo du laboratoire Jefferson/Dave Gaskell)

Article : « Ultrahigh-precision Compton polarimetry at 2 GeV » – DOI: 10.1103/PhysRevC.109.024323

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: comptonelectronlaserprecision
Article précédent

Une signature unique a été trouvée sur une étoile cannibale

Article suivant

45 nœuds et 73 liens : l’expérience réussie de réduction de la consommation d’énergie

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Les nouveaux géants de la matière : L’ère de la fabrication additive XXL
Impression

Les nouveaux géants de la matière : L’ère de la fabrication additive XXL

il y a 10 heures
Représentation artistique d'un cristal 2D à l'intérieur d'une puce, où la lumière (en bleu) se couple au champ électrique du cristal (en vert). (Crédit : TU Delft / Université de Nimègue)
Matériaux

Un matériau « réfractant la lumière » bat tous les records pour la fabrication de puces électroniques

il y a 17 heures
L'image de gauche montre le robot cueilleur de tomates et la caméra. L'image de droite montre une « vue robotisée » des tomates. Rouge
Robotique

RoboCrop : Apprendre aux robots à cueillir des tomates

il y a 1 jour
Lauren Riddiford, Aleš Hrabec et Jeffrey Brock (de gauche à droite) dans la salle blanche de Park Innovaare, située juste à côté du PSI. C'est là que de nouvelles structures magnétiques sont créées et modifiées avec précision à l'aide de la technologie laser. (Crédit : © Institut Paul Scherrer PSI / Mahir Dzambegovic)
Laser

Le laser dessine des paysages magnétiques sur mesure

il y a 2 jours
L'auteur principal Marshall Trout, à droite, a travaillé avec quatre personnes amputées pour étudier comment l'IA pourrait être utilisée pour contrôler de manière autonome
Robotique

Une main bionique dopée à l’IA saisit les objets toute seule et réduit l’effort mental

il y a 2 jours
Image SEM des tubes magnétiques torsadés. 2025 EPFL/LMGN CC BY SA
Nanotechnologie

Les nanotubes torsadés qui racontent une histoire

il y a 3 jours
Plus d'articles
Article suivant
45 nœuds et 73 liens : l'expérience réussie de réduction de la consommation d'énergie

45 nœuds et 73 liens : l'expérience réussie de réduction de la consommation d'énergie

Gauss Fusion et TUM sélectionneront 5 sites potentiels pour la centrale à fusion d'ici fin 2024

Gauss Fusion et TUM sélectionneront 5 sites potentiels pour la centrale à fusion d'ici fin 2024

Cuire sur une cuisinière à gaz pourrait nuire à votre santé respiratoire

Cuire sur une cuisinière à gaz pourrait nuire à votre santé respiratoire

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Le récipient en acrylique de 12 mètres de diamètre entouré de 9 000 tubes photomultiplicateurs au cœur du Sudbury

Nouvelle percée dans la détection des « particules fantômes » du Soleil

15 décembre 2025
Les nouveaux géants de la matière : L’ère de la fabrication additive XXL

Les nouveaux géants de la matière : L’ère de la fabrication additive XXL

14 décembre 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com