La compréhension des catalyseurs joue un rôle déterminant dans l’optimisation des processus industriels et quotidiens. Comment peut-on accélérer la découverte de nouvelles substances catalytiques pour un avenir plus durable? Les chercheurs de SLAC ont peut-être trouvé une réponse, en développant une méthode innovante pour explorer les « catalyseurs à atomes uniques ».
Les catalyseurs sont omniprésents, bien que souvent méconnus. Leur rôle consiste à accélérer les réactions chimiques sans être consommés dans le processus. Par exemple, la levure catalyse la fermentation dans la production du pain, tandis que des catalyseurs artificiels transforment des matériaux bruts en carburants avec une efficacité accrue. Les catalyseurs à atomes uniques, une nouvelle classe prometteuse, suscitent un intérêt croissant en raison de leur potentiel à maximiser l’utilisation de chaque atome de métal.
Une équipe de chercheurs du Stanford Synchrotron Radiation Lightsource (SSRL) du Laboratoire national d’accélérateurs SLAC a collaboré avec l’Université de Californie à Davis pour développer un outil logiciel révolutionnaire. Ce logiciel permet d’analyser la structure des sites actifs des catalyseurs à atomes uniques de manière plus rapide et précise.
Traditionnellement, les catalyseurs utilisent un support inerte pour stabiliser des agrégats de métaux, où seuls les atomes de surface agissent comme sites actifs. Cependant, pour optimiser l’utilisation de chaque atome, les catalyseurs à atomes uniques dispersent des atomes individuels sur le support.
Rachita Rana, doctorante de l’Université de Californie à Davis, a mené l’étude en utilisant une technique appelée spectroscopie d’absorption des rayons X à structure fine étendue (EXAFS). Cette méthode fournit des informations sur l’environnement immédiat de l’atome actif, notamment le nombre et la distance des atomes voisins. Auparavant, l’analyse de données EXAFS était longue et laborieuse, nécessitant l’évaluation de multiples structures possibles.
Rana a proposé d’automatiser cette analyse en combinant des calculs théoriques (théorie de la fonctionnelle de la densité) avec les données EXAFS. Leur logiciel, baptisé QuantEXAFS, permettait initialement de déterminer la structure pour un type d’atome, en l’occurrence le platine. Toutefois, les catalyseurs réels contiennent souvent à la fois des atomes uniques et des nanoparticules. Ainsi, Rana a étendu les capacités de QuantEXAFS pour créer MS-QuantEXAFS, qui peut maintenant distinguer et quantifier les fractions de ces deux formes.
“MS-QuantEXAFS ne se contente pas d’identifier les sites actifs, mais quantifie également le pourcentage d’un site spécifique et automatise tout le processus d’analyse des données,” a-t-elle précisé. “Si vous faites cela manuellement, cela peut prendre de quelques jours à plusieurs mois. Avec MS-QuantEXAFS, vous pourriez potentiellement effectuer cette analyse en une nuit sur un ordinateur local.”
L’équipe envisage de rendre MS-QuantEXAFS accessible à la communauté scientifique. “Cet outil a beaucoup à offrir aux chercheurs en catalyse,” a affirmé pour conclure Rana. Simon R. Bare, co-auteur et scientifique distingué au SSRL, souligne également l’importance de cet outil dans les programmes de formation, en particulier pour les futurs étudiants.
Légende illustration : « Des chercheurs du SLAC et de l’université de Californie à Davis ont mis au point un logiciel permettant d’obtenir des informations plus quantitatives sur le site actif d’un catalyseur à atome unique. MS-QuantEXAFS calcule les pourcentages d’atomes de platine et de nanoparticules de platine sur un catalyseur à atome unique, ce qui aide les chercheurs à établir un lien entre la structure et l’activité du catalyseur. (Greg Stewart/SLAC National Accelerator Laboratory) »
Article : ‘Quantifying the Site Heterogeneities of Non-Uniform Catalysts Using QuantEXAFS’ / DOI : 10.1002/cmtd.202400020 – DOE/SLAC National Accelerator Laboratory – Publication dans la revue Chemistry – Methods
Source : SLAC