Des chercheurs de la Source suisse de neutrons à spallation SINQ de l’Institut Paul Scherrer PSI ont mis au point une méthode innovante pour contrôler le magnétisme des matériaux à l’aide d’un champ électrique à faible consommation d’énergie. La découverte porte sur des matériaux connus sous le nom de magnétoélectriques, qui sont prometteurs pour les technologies énergétiques de la prochaine génération, le stockage des données, la conversion de l’énergie et les appareils médicaux. Les résultats sont publiés dans la revue Nature Communications.
L’IA et les centres de données étant de plus en plus gourmands en énergie, les scientifiques sont à la recherche de technologies plus intelligentes et plus écologiques. C’est là qu’interviennent les matériaux magnétoélectriques, des composés spéciaux dont les propriétés électriques et magnétiques sont liées. Ce lien permet aux chercheurs de contrôler le magnétisme à l’aide de champs électriques, ce qui pourrait ouvrir la voie à des dispositifs de mémoire et d’informatique très économes en énergie.
L’un de ces matériaux magnétoélectriques est le cristal vert olive de l’oxyséléniure de cuivre (Cu₂OSeO₃). À basse température, les spins atomiques s’organisent en textures magnétiques exotiques, formant des structures telles que des hélices et des cônes. Ces motifs sont beaucoup plus grands que le réseau atomique sous-jacent et ne sont pas fixés à sa géométrie, ce qui les rend hautement ajustables.
Les neutrons observent la réorientation du magnétisme par les champs électriques
Les scientifiques du PSI ont maintenant démontré qu’un champ électrique peut orienter ces textures magnétiques à l’intérieur de l’oxyséléniure de cuivre. Dans les matériaux classiques, les structures magnétiques – formées par la torsion et l’alignement des spins atomiques – sont bloquées dans des orientations spécifiques. Dans l’oxyséléniure de cuivre, les chercheurs ont pu, en appliquant la bonne tension, les déplacer et les réorienter.
C’est la première fois que la direction de propagation d’une texture magnétique peut être continuellement réorientée dans un matériau à l’aide d’un champ électrique – un effet connu sous le nom de déflexion magnétoélectrique.
Pour étudier les structures magnétiques, l’équipe a utilisé la ligne de faisceau SANS-I de la source suisse de neutrons à spallation SINQ, une installation qui utilise des faisceaux de neutrons pour cartographier l’arrangement et l’orientation des structures magnétiques à l’intérieur d’un solide à l’échelle nanométrique. Un environnement d’échantillonnage personnalisé a permis aux chercheurs d’appliquer un champ électrique élevé tout en sondant simultanément la magnétisation à l’intérieur du cristal par diffusion de neutrons aux petits angles (SANS).
« La possibilité d’orienter des textures magnétiques aussi importantes à l’aide de champs électriques montre ce qu’il est possible de faire lorsque des expériences créatives sont associées à des infrastructures de recherche de classe mondiale », déclare Jonathan White, scientifique de la ligne de faisceaux au PSI. « La raison pour laquelle nous pouvons capturer un effet aussi subtil que la déviation magnétoélectrique est due à la résolution exceptionnelle et à la polyvalence du SANS-I. »
De la nouvelle physique à la nouvelle technologie
La réponse à la déflexion magnétoélectrique récemment découverte a incité les chercheurs à approfondir leurs recherches sur la physique sous-jacente. Ce qu’ils ont découvert est intriguant : les structures magnétiques n’ont pas seulement réagi, elles se sont comportées de trois manières distinctes en fonction de l’intensité du champ électrique. Les champs électriques faibles font doucement dévier les structures magnétiques avec une réponse linéaire. Les champs moyens entraînent un comportement plus complexe et non linéaire. Les champs élevés provoquent des inversions spectaculaires de 90 degrés dans la direction de propagation de la texture magnétique.
« Chacun de ces régimes présente des signatures uniques qui pourraient être intégrées dans des dispositifs de détection et de stockage », ajoute Sam Moody, chercheur postdoctoral au PSI et auteur principal de l’étude. « Une possibilité particulièrement intéressante est celle des dispositifs hybrides qui utilisent la capacité de régler l’apparition de ces régimes en faisant varier l’intensité du champ magnétique appliqué. »
La réponse de déflexion magnétoélectrique offre un nouvel outil puissant pour contrôler le magnétisme sans dépendre de champs magnétiques gourmands en énergie. La grande souplesse avec laquelle les chercheurs ont pu manipuler le magnétisme fait de leur découverte une perspective intéressante pour des applications dans le domaine des technologies durables.
Article : « Deterministic control of nanomagnetic spiral trajectories using an electric field » – Samuel H. Moody et al – Nature Communications – DOI: 10.1038/s41467-025-60288-1
Source : Institut Paul Scherrer